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Preface 

This monograph is an introduction to optimal control theory for systems 
governed by vector ordinary differential equations. It is not intended as a 
state-of-the-art handbook for researchers. We have tried to keep two types 
of reader in mind: (1) mathematicians, graduate students, and advanced 
undergraduates in mathematics who want a concise introduction to a field 
which contains nontrivial interesting applications of mathematics (for 
example, weak convergence, convexity, and the theory of ordinary 
differential equations); (2) economists, applied scientists, and engineers who 
want to understand some of the mathematical foundations. of optimal 
control theory. 

In general, we have emphasized motivation and explanation, avoiding the 
"definition-axiom-theorem-proof" approach. We make use of a large 
number of examples, especially one simple canonical example which we 
carry through the entire book. In proving theorems, we often just prove the 
simplest case, then state the more general results which can be proved. Many 
of the more difficult topics are discussed in the "Notes" sections at the end of 
chapters and several major proofs are in the Appendices. We feel that a solid 
understanding of basic facts is best attained by at first avoiding excessive 
generality. 

We have not tried to give an exhaustive list of references, preferring to 
refer the reader to existing books or papers with extensive bibliographies. 
References are given by author's name and the year of publication, e.g., 
Waltman [1974]. 

Prerequisites for reading this monograph are basic courses in ordinary 
differential equations, linear algebra, and modem advanced calculus 
(including some Lebesgue integration). Some functional analysis is used, but 
the proofs involved may be treated as optional. We have summarized the 
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relevant facts from these areas in an Appendix. We also give references in 
this Appendix to standard texts in these areas. 

We would like to express our appreciation to: Professor Jim Yorke of the 
University of Maryland for providing several important and original proofs 
to simplify the presentation of difficult material; Dr. Stephen Lewis of the 
University of Alberta for providing several interesting examples from 
Economics; Ms. Peggy Gendron of the University of Minnesota and June 
Talpash and Laura Thompson of Edmonton, Alberta for their excellent 
typing work; the universities (and, ultimately, the relevant taxpayers) of 
Alberta, Maryland, and Minnesota - the first two for their direct financial 
support, and the last for providing facilities for J.W.M. while on sabbatical; 
The National Research Council of Canada, for its continuing support of 
J.W.M. 

Edmonton, Alberta 
August, 1980 
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