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Preface 

This book provides an introduction to the theory of dynamical systems with the 
aid of the Maple algebraic manipulation package. lt is written for both senior un
dergraduates and first-year graduale students. The firsthalf of the book deals with 
continuous systems using ordinary differential equations (Chapters 1-12) and the 
second half is devoted to the study of discrete dynamical systems (Chapters 13-20). 
(The author has gone for breadth of coverage rather than fine detail and theorems 
with proof are kept at a minimum.) The material is not clouded by functional 
analytic and group theoretical definitions, and so is intelligible to readers with a 
general mathematical background. Some of the topics covered are scarcely cov
ered elsewhere. Most of the material in Chapters 9-12, 16, 17, 19, and 20 is at 
postgraduale Ievel and has been influenced by the author's own research interests. 
It has been found that these chapters are especially useful as reference material for 
senior undergraduate project work. The book has a very hands-on approach and 
takes the reader from the basic theory right through to recently published research 
material. 

An efficient tutorial guide to the Maple symbolic computation system has 
been included in Chapter 0. Students should be able to complete tutorials one and 
two in under two hours depending upon their past experience. The author suggests 
that the reader should save the relevant example programs listed throughout the 
book in separate files. These programs can then be edited accordingly when at
tempting the exercises at the end of each chapter. The Maple commands, programs 
and output can also be viewed in color over the Web at either 
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http://www.birkhauser.com/cgi-win/ISBN/0-8176-4150-5 

or Maple's applications site, 

http://www.maplesoft.com/appsl. 

Throughout the book, Maple is viewed as a tool for solving systems or producing 
eye-catching graphics. The author has used Maple V release 5.1 and Maple 6 in 
the preparation of the material. However, the Maple programs have been kept as 
simple as possible and should also run under later versions of the package. 

The first few chapters of the book cover some theory of ordinary differential 
equations and applications to models in the real world are given. The theory of dif
ferential equations applied to chemical kinetics and electric circuits is introduced 
in some detail. Chapter 1 ends with the existence and uniqueness theorem for the 
solutions of certain types of differential equation. The theory behind the construc
tion of phase plane portraits for two-dimensional systems is dealt with in Chapters 
2 and 3, and applications to modeling the populations of interacting species are 
discussed in Chapter 4. Limit cycles, or isolated periodic solutions, are introduced 
in Chapter 5. Since we live in a periodic world, these are the most common type 
of solution found when modeling nonlinear dynamical systems. They appear ex
tensively when modeling both the technological and natural sciences. Hamiltonian 
(conservative) systems and stability are discussed in Chapter 6, and Chapter 7 is 
concerned with how planar systems vary depending upon a parameter. Bifurcation, 
multistability, and bistability are discussed. 

The reader is first introduced to the concept of chaos in Chapters 8 and 
9, where three-dimensional systems and Poincare maps are investigated. These 
higher-dimensional systems can exhibit strange attractors and chaotic dynamics. 
Once again the theory can be applied to chemical kinetics and electric circuits; a 
simplified model for the weather is also briefty discussed. Both local and global 
bifurcations are investigated in Chapter I 0. The main results and statement of the 
famous second part of David Hilbert's sixteenth problern are listed in Chapter 11. 
In order to understand these results, Poincare compactification is introduced. The 
study of continuous systems ends with one of the authors specialities-Iimit cycles 
of Lienard systems. There is some detail on Lienard systems in particular in the 
first half of the book, but they do have a ubiquity for systems in the plane. 

Chapters 13-20 deal with discrete dynamical systems. Chapter 13 starts with 
a generat introduction to recurrence relations and iteration. Applications to popu
lation modeling and harvesting and culling policies is then investigated. Chaos in 
discrete systems is investigated and bifurcation diagrams are plotted in Chapter 14. 
The concept of universality is discussed for the first time. Complex iterative maps 
are introduced in Chapter 15. Julia sets and the now famous Mandelbrotset are 
plotted. As a simple introduction to optics, electromagnetic waves and Maxwell's 
equations are studied at the beginning of Chapter 16. Abriefhistory of nonlin
ear bistable optical resonators is discussed and the simple fiber ring resonator is 
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analyzed in particular. Chapters 16 and 17 are devoted to the study of these opti
cal resonators and topics such as bifurcation, bistability, chaos, chaotic attractors, 
instabilities, linear stability analysis, multistability, and nonlinearity, which have 
already been dealt with in earlier chapters, are reviewed. Some simple fractals 
may be constructed using pencil and paper in Chapter 18, and the idea of fractal 
dimension is introduced. Fractals may be thought of as identical motifs repeated 
on ever reduced scales. Unfortunately, most of the fractals appearing in nature are 
not homogeneous but are more heterogeneous, hence the need for the multifractal 
theory given in Chapter 19. The final chapter is devoted to the new and exciting 
theory behind chaos control. For most systems, the maxim used by engineers in 
the past has been "stability good, chaos bad," but more and more nowadays this 
is being replaced with "stability good, chaos better." There are exciting and new 
applications to cardiology, Iaser technology, and space research, for example. 

This book is informed by the research interests of the author which are cur
rently nonlinear ordinary differential equations, nonlinear optics and multifractals. 
Some references include recently published research articles. 

The prerequisites for studying dynamical systems using this book are under
graduale courses in linear algebra, real and complex analysis, calculus and ordinary 
differential equations; a knowledge of a computer language such as Fortran or Pas
cal would be beneficial but not essential. 
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