Stanisław Łojasiewicz

Introduction to Complex Analytic Geometry

Translated from the Polish by Maciej Klimek

1991 Springer Basel AG

Author's address:

Dr. Stanisław Łojasiewicz Jagiellonian University Department of Mathematics ul. Reymonta 4 PL-30-059 Cracow (Poland)

Originally published as: Wstęp do geometrii analitycznej zespolonej © PWN – Państwowe Wydawnictwo Naukowe, Warszawa, 1988

Deutsche Bibliothek Cataloging-in-Publication Data

Łojasiewicz, Stanisław:

Introduction to complex analytic geometry / Stanisław Łojasiewicz. Transl. from the Polish by Maciej Klimek. – Basel: Boston; Berlin: Birkhäuser, 1991 Einheitssacht.: Wstep do geometrii analitycznei zespolonej «engl.» ISBN 978-3-0348-7619-3 ISBN 978-3-0348-7617-9 (eBook) DOI 10.1007/978-3-0348-7617-9

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law, where copies are made for other than private use a fee is payable to «Verwertungsgesellschaft Wort», Munich.

© 1991 for the English edition: Springer Basel AG Originally published by Birkhäuser Verlag Basel 1991

Printed from the translator's camera-ready manuscript on acid-free paper

CONTENTS

Preface to the Polish Edition	v
Preface to the English Edition	ix

PRELIMINARIES

CHAPTER A. Algebra		1
§ 1.	Rings, fields, modules, ideals, vector spaces	1
§ 2.	Polynomials	15
§ 3.	Polynomial mappings	20
§ 4.	Symmetric polynomials. Discriminant	23
§ 5.	Extensions of fields	26
§ 6.	Factorial rings	27
§ 7.	Primitive element theorem	29
§8.	Extensions of rings	30
§ 9.	Noetherian rings	34
§10.	Local rings	39
$\S{11}.$	Localization	46
§12.	Krull's dimension	53
§13.	Modules of syzygies and homological dimension	57
§14.	The depth of a module	61
§15.	Regular rings	66
CHAPT	ER B. Topology	72

§	1.	Some topological properties of sets and families of sets	72
§	2.	Open, closed and proper mappings	74
§	3.	Local homeomorphisms and coverings	77
§	4.	Germs of sets and functions	80
§	5.	The topology of a finite dimensional vector space	
		$(\text{over } \mathbf{C} \text{ or } \mathbf{R})$	84
§	6.	The topology of the Grassmann space	87

xii	Contents	
СНАРЗ	TER C. Complex analysis	98
§ 1.	Holomorphic mappings	98
§ 2.	The Weierstrass preparation theorem	109
§ 3.	Complex manifolds	112
§ 4.	The rank theorem. Submersions	134

COMPLEX ANALYTIC GEOMETRY

CHAPT	ER I. Rings of germs of holomorphic functions	139
§ 1.	Elementary properties. Noether and local properties.	
	Regularity	139
§ 2.	Unique factorization property	145
§ 3.	The Preparation Theorem in Thom-Martinet version	147
CHAPT	ER II. Analytic sets, analytic germs and their ideals	150
§ 1.	Dimension	150
§ 2.	Thin sets	152
§ 3.	Analytic sets and germs	153
§ 4.	Ideals of germs and the loci of ideals. Decomposition into	
	simple germs	160
§ 5.	Principal germs	164
§ 6.	One-dimensional germs. The Puiseux theorem	170
CHAPT	ER III. Fundamental lemmas	178
§ 1.	Lemmas on quasi-covers	178
§ 2.	Regular and k-normal ideals and germs	183
§ 3.	Rückert's descriptive lemma	188
§4.	Hilbert's Nullstellensatz and other consequences	
	(concerning dimension, regularity and k -normality)	196
CHAPT	ER IV. Geometry of analytic sets	203
§ 1.	Normal triples	203
§ 2.	Regular and singular points. Decomposition into simple components	208

	Contents	xiii
ξ 3.	Some properties of analytic germs and sets	221
§ 4.	The ring of an analytic germ. Zariski's dimension	225
§ 5.	The maximum principle	234
§ 6.	The Remmert-Stein removable singularity theorem	237
§ 7.	Regular separation	242
§ 8.	Analytically constructible sets	245
CHAPT	ER V. Holomorphic mappings	254
ξ1.	Some properties of holomorphic mappings of manifolds	254
§ 2.	The multiplicity theorem. Rouché's theorem	256
§ 3.	Holomorphic mappings of analytic sets	264
§ 4.	Analytic spaces	275
§ 5.	Remmert's proper mapping theorem	289
§ 6.	Remmert's open mapping theorem	294
§ 7.	Finite holomorphic mappings	299
§ 8.	c-holomorphic mappings	311
СНАРТ	ER VI. Normalization	314
§ 1.	The Cartan and Oka coherence theorems	314
§ 2.	Normal spaces. Universal denominators	332
§ 3.	Normal points of analytic spaces	337
§ 4.	Normalization	343
CHAPT	ER VII. Analyticity and algebraicity	352
§ 1.	Algebraic sets and their ideals	352
§ 2.	The projective space as a manifold	355
§3. €∕	The projective closure of a vector space	359
34. SE	Grassmann manifolds	304 971
90. 86	Algebraic acts in projective and see Chew's theorem	371 201
90. 87	The Budin and Sadullacy theorems	388
31. 88	Constructible sets. The Chevalley theorem	300
30. 80	Bückert's lemma for algebraic sets	400
3 9. 810	Hilbert's Nullstellensatz for polynomials	404
811	Further properties of algebraic sets	101
3*1.	Principal varieties Degree	407
§12 .	The ring of an algebraic subset of a vector space	425
0	G	

Contents

§13.	Bézout's theorem. Biholomorphic mappings	
	of projective spaces	430
$\S{14}$.	Meromorphic functions and rational functions	438
§15.	Ideals of \mathcal{O}_n with polynomial generators	456
§16.	Serre's algebraic graph theorem.	459
§17.	Algebraic spaces	472
§18.	Biholomorphic mappings of factorial subsets	
	in projective spaces	487
§19.	The Andreotti-Salmon theorem	492
§20.	Chow's theorem on biholomorphic mappings	
	of Grassmann manifolds	502
References		507
Notation index		511
Subject index		514

xiv