Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics

William G. Litvinov

Springer Basel AG

Author:

William G. Litvinov Institute of Statics and Dynamics of Aero-Space Structures University of Stuttgart Pfaffenwaldring 27 D-70550 Stuttgart

2000 Mathematics Subject Classification 49K20; 35J45, 73Kxx

A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA

Deutsche Bibliothek Cataloging-in-Publication Data

Litvinov, Vil'iam G.: Optimization in elliptic problems with applications to mechanics of deformable bodies and fluid mechanics / William G. Litvinov. - Basel ; Boston ; Berlin : Birkhäuser, 2000 (Operator theory ; Vol. 119) ISBN 978-3-0348-9545-3 ISBN 978-3-0348-8387-0 (eBook) DOI 10.1007/978-3-0348-8387-0

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained.

© 2000 Springer Basel AG Originally published by Birkhäuser Verlag in 2000 Softcover reprint of the hardcover 1st edition 2000 Printed on acid-free paper produced from chlorine-free pulp. TCF ∞ Cover design: Heinz Hiltbrunner, Basel

ISBN 978-3-0348-9545-3

	Preface			xv
	Intr	oductio	D n	xix
1	Basi	c Defin	itions and Auxiliary Statements	
	1.1	Sets, i	functions, real numbers	1
		1.1.1	Notations and definitions	1
		1.1.2	Real numbers	2
	1.2	Topol	ogical, metric, and normed spaces	4
		1.2.1	General notions	4
		1.2.2	Metric spaces	5
		1.2.3	Normed vector spaces	6
	1.3	Conti	nuous functions and compact spaces	10
		1.3.1	Continuous and semicontinuous mappings	10
		1.3.2	Compact spaces	12
		1.3.3	Continuous functions on compact spaces	13
	1.4	Maxir	num function and its properties	14
		1.4.1	Discrete maximum function	14
		1.4.2	General maximum function	16
	1.5	Hilber	rt space	17
		1.5.1	Basic definitions and properties	17
		1.5.2	Compact and selfadjoint operators in a Hilbert space	20
		1.5.3	Theorem on continuity of a spectrum	25
		1.5.4	Embedding of a Hilbert space in its dual	31
		1.5.5	Scales of Hilbert spaces and compact embedding	33
	1.6	Funct	ional spaces that are used in the investigation	
		of bou	indary value and optimal control problems	36
		1.6.1	Spaces of continuously differentiable functions	36
		1.6.2	Spaces of integrable functions	37
		1.6.3	Test and generalized functions	37
		1.6.4	Sobolev spaces	39
	1.7	Inequ	alities of coerciveness	44
		1.7.1	Coercive systems of operators	44
		1.7.2	Korn's inequality	48

	1.8	Theore	em on the continuity of solutions	
		of fund	tional equations	50
	1.9	Differe	ntiation in Banach spaces and	
		the im	plicit function theorem	51
		1.9.1	Fréchet derivative and its properties	51
		1.9.2	Implicit function	52
		1.9.3	The Gâteaux derivative and its connection with	
			the Fréchet derivative	53
	1.10	Differe	entiation of the norm in the space $W_p^m(\Omega)$	54
		1.10.1	Auxiliary statement	54
		1.10.2	0	55
	1.11	Differe	entiation of eigenvalues	58
		1.11.1	The eigenvalue problem	58
		1.11.2	Differentiation of an operator-valued function	60
		1.11.3	Eigenspaces and projections	61
		1.11.4	Differentiation of eigenvalues	64
	1.12	The La	agrange principle in smooth	
				70
	1.13	$G ext{-conv}$	vergence and G -closedness of	
				72
	1.14	Diffeor	morphisms and invariance of Sobolev spaces	
			1 1	73
		1.14.1	Diffeomorphisms and the relations between	
				73
		1.14.2	Sequential Fréchet derivatives and partial derivatives	
			-	75
			-	76
		1.14.4	Transformation of derivatives under	
			the change of variables	78
2	Opti	mal Co	ntrol by Coefficients	
_	-		bystems	
	2.1	-	•	81
		2.1.1		81
		2.1.2		82
	2.2	Optim		86
		2.2.1	-	86
		2.2.2		88
		2.2.3	Regular problem and necessary conditions	
				90
		2.2.4		97
		2.2.5	Some remarks on the use of regular and	
				02
	2.3	The fit	nite-dimensional problem	03

2.4	The fir	nite-dimensional problem (another approach)	5
	2.4.1	The set $U^{(t)}$	15
	2.4.2	Approximate solution of the problem $(2.2.22)$ 10	17
	2.4.3	Approximate solution of the optimal control problem	
		when the set $\overset{\circ}{U_{ad}}$ is empty	9
	2.4.4	On the computation of the functional $h \to \Psi_k(h, u_h)$ 11	
	2.4.5	Calculation and use of the Fréchet derivative of	Č
		the functional $h \to \Psi_m(h, u_h)$.3
2.5	Spectr	al problem $\ldots \ldots 11$	
	2.5.1	Eigenvalue problem	
	2.5.2	On the continuity of the spectrum	
2.6		ization of the spectrum	
	2.6.1	Formulation of the problem and	
	2 .0.1	the existence theorem	20
	2.6.2	Finite-dimensional approximation of the	
		optimal control problem	22
	2.6.3	Computation of eigenvalues	
2.7		ol under restrictions on the spectrum	
	2.7.1	Optimal control problem	
	2.7.2	Approximate solution of the problem $(2.7.7)$	
	2.7.3	Second method of approximate solution	-
		of the problem $(2.7.7)$	2
	2.7.4	Differentiation of the functionals $h \to A_i \mu(h)$ and	
		necessary conditions of optimality	5
2.8	The ba	asic optimal control problem	
	2.8.1	Setting of the problem. Existence theorem	
	2.8.2	Approximate solution of the problem $(2.8.6)$	
2.9		$\begin{array}{c} 1 \\ \text{ombined problem} \\ \dots \\ $	
2.10		al control problem for the case when	
	-	ate of the system is characterized	
		et of functions	.5
		Setting of the problem	5
		The existence theorem	6
2.11		eneral control problem	9
	-	Bilinear form a_q and the corresponding equation 15	0
		Bilinear form b_r and the spectral problem	
		Basic control problem	
		Application of the basic control problem	
	_	(combined problem) $\dots \dots \dots$	7
2.12	Optim	ization by the shape of domain	
	-	v operators	9
		Domains and bilinear forms	9

Contents

		2.12.2	Optimization problem connected with solution	100
		0 10 9	of an operator equation	160
			Eigenvalue optimization problem \ldots	162
	0 19		Some realizations of the spaces M_l and N_l	164
	2.13	-	ization problems with smooth	100
			ons of state equations	168
			Systems of elliptic equations	168
			Elliptic problems in domains and in a fixed domain	$\begin{array}{c} 170 \\ 173 \end{array}$
			The problem of domain shape optimization	173
		2.13.4	Approximate solution of the direct problem	
			ensuring convergence in the norm of a space of smooth functions	174
				174
3		-	the Right-hand Sides	
			Problems	
	3.1		e minimum of nonlinear functionals	177
		3.1.1	Setting of the problem. Auxiliary statements	177
		3.1.2	The existence theorem	179
		3.1.3	Characterization of a minimizing element	181
		3.1.4	Functionals continuous in the weak topology	182
	3.2		ximate solution of the minimization problem	183
		3.2.1	Inner point lemma	183
		3.2.2	Finite-dimensional problem	185
	3.3		ol by the right-hand side in elliptic	
			ms provided the goal functional is quadratic	191
		3.3.1	Setting of the problem	191
		3.3.2	Existence of a solution. Optimality conditions	192
		3.3.3	An example of a system described	
		.	by the Dirichlet problem	194
	3.4		ax control problems	198
	3.5		ol of systems whose state is described	
			iational inequalities	201
		3.5.1	Setting of the problem	201
		3.5.2	The existence theorem	203
		3.5.3	An example of control of a system described	005
			by a variational inequality	205
4	Dire	ct Prob	plems for Plates and Shells	
	4.1	Bendir	ng and free oscillations of thin plates	209
		4.1.1	Basic relations of the theory of bending	
			of thin plates	209
		4.1.2	Orthotropic plates	211
		4.1.3	Bilinear form corresponding to the strain energy	
			of the plate	212
		4.1.4	Problem of bending of a plate	215

	4.1.5	Problem of free oscillations of a plate	221				
4.2	Problem of stability of a thin plate						
	4.2.1	Stored energy of a plate	223				
	4.2.2	Conditions of stationarity	226				
	4.2.3	Auxiliary statements	228				
	4.2.4	Transformation of the problem $(4.2.27), (4.2.28)$	231				
	4.2.5	Stability of a plate and bifurcation	235				
	4.2.6	An example of nonexistence of stable solutions	239				
4.3	Model of the three-layered plate ignoring						
	shears	in the middle layer	242				
	4.3.1	Basic relations	242				
	4.3.2	Problems of the bending and of the free					
		flexural oscillations	244				
4.4	Model	of the three-layered plate accounting					
	for she	ears in the middle layer	246				
	4.4.1	Basic relations	246				
	4.4.2	Bilinear form corresponding to the					
		three-layered plate	250				
	4.4.3	Bending of the three-layered plate	253				
	4.4.4	Natural oscillations of three-layered plate	255				
4.5	Basic relations of the shell theory						
4.6	Shells	of revolution	260				
	4.6.1	Deformations and functional spaces	260				
	4.6.2	The bilinear form a_h	262				
	4.6.3	The subspace of functions with zero-point					
		strain energy	264				
4.7		w shells	265				
4.8		ems of statics of shells	267				
4.9		scillations of a shell	268				
4.10	Proble	em of shell stability	270				
		On some approaches to stability problems	270				
	4.10.2	Reducing of the stability problem					
		to the eigenvalue problem $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	271				
		Spectral problem $(4.10.12)$	272				
4.11		shear model of a shell	274				
		Strain energy of an elastic shell	274				
	4.11.2	Shallow shell	276				
	4.11.3	A relation between the Kirchhoff and					
		Timoshenko models of shell	278				
4.12	Lamin	ated shells	282				
	4.12.1		282				
		Shell of revolution	284				
	4.12.3	Shallow shells	286				

5	Opt	imizatio	on of Deformable Solids	
	5.1	Settin	gs of optimization problems	
		for pla	ates and shells	287
		5.1.1	Goal functional and a function of control	287
		5.1.2	Restrictions	289
	5.2	Appro	eximate solution of direct and optimization	
		proble	ems for plates and shells	291
		5.2.1	Direct problems and spline functions	291
		5.2.2	The spaces V_m for plates $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	292
		5.2.3	The spaces V_m for shells $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	294
		5.2.4	Direct problems for nonfastened plates and shells	297
		5.2.5	Solution of optimization problems	298
	5.3	Optin	nization problems for plates	
		(contr	rol by the function of the thickness)	300
		5.3.1	Optimization under restrictions on strength	300
		5.3.2	Stability optimization problem	305
		5.3.3	Optimization of frequencies of free oscillations	311
		5.3.4	Combined optimization problem and optimization	
			for a class of loads	312
	5.4	Optin	nization problems for shells	
		(contr	rol by functions of midsurface and thickness)	312
		5.4.1	Problem of optimization of a shell of revolution	
			with respect to strength	313
		5.4.2	Optimization according to the stability of a	
			cylindrical shell subject to a hydrostatic	
			compressive load	316
	5.5	Contr	ol by the shape of a hole and by	
		the fu	unction of thickness for a shallow shell	319
		5.5.1	Problem of optimization according to strength	319
		5.5.2	Approximate solution of the optimization	
			and direct problems	322
		5.5.3	Problem of optimization of eigenvalues	324
		5.5.4	Approximate solution of the eigenvalue problem	325
	5.6	Contr	ol by the load for plates and shells	326
		5.6.1	General problem of control by the load	326
		5.6.2	Optimization problems for plates	327
	5.7	Optin	nization of structures of composite materials	333
		5.7.1	Concept of a composite material	333
		5.7.2	Homogenization (averaging) of a periodical structure	
			based on G-convergence	334
		5.7.3	Effective elasticity characteristics of granule and	
			fiber reinforced composites	343
		5.7.4	Optimization of the effective elasticity constants	
			of a composite	348

\mathbf{C}	ont	er	$_{\rm nts}$
~	~	~~	-02

		5.7.5	Optimization of a granule reinforced composite	354
		5.7.6	Optimization of composite laminate shells	357
		5.7.7	Optimization of the composite structure	367
	5.8	Optim	ization of laminate composite covers	
			ing to mechanical and radio engineering	
		charac	teristics	373
		5.8.1	Propagation of electromagnetic waves	
			through a laminated medium	373
		5.8.2	Optimization problems	380
	5.9		optimization of a two-dimensional	
			body	383
		5.9.1	Sets of controls and domains in the optimization problem	383
		5.9.2	Problems of elasticity in domains	384
		5.9.3	The optimization problem	386
	5.10	-	ization of the internal boundary	
			vo-dimensional elastic body	388
	5.11		ization problems on manifolds and	
			optimization of elastic solids	391
			Optimization problem for an elastic solid	392
		5.11.2	Spaces and operators on $\mathbb{R}/2\pi\mathbb{Z}$,	
		F 11 0	auxiliary statements	398
	F 10		Optimization problem on $\mathbb{R}/2\pi\mathbb{Z}$	405
	5.12	-	ization of the residual stresses	400
			elastoplastic body	409
		0.12.1	elastoplastic body	410
		5 19 9	Residual stresses and deformations	410
			Temperature pattern in a medium	421
			Optimization problem	424
		0.12.4		420
6	-		on Problems for Steady Flows of	
			l Nonlinear Viscous Fluids	
	6.1		em of steady flow of a nonlinear viscous fluid	431
		6.1.1	Basic equations and assumptions	431
		6.1.2	Formulation of the problem	434
		6.1.3	Existence theorem	439
	6.2		em on continuity	443
	6.3		uity with respect to the shape of the domain	446
		6.3.1	Formulation of the problem \ldots \ldots \ldots	446
		6.3.2	Lemmas on operators L_q and B_q	448
	<u> </u>	6.3.3	Theorem on continuity	451
	6.4		ol of fluid flows by perforated walls and	
		compu	utation of the function of filtration	454

	6.4.1	The problem of flow in a circular cylinder and			
		the function of filtration $\ldots \ldots 455$			
	6.4.2	The passage factor for the power model			
	6.4.3	Control of the surface forces at the inlet			
		by the perforated wall			
6.5	The flo	w in a canal with a perforated			
	wall pl	aced inside			
	6.5.1	Basic equations			
	6.5.2	Generalized solution of the problem			
6.6	Optimi	ization by the functions of surface			
	forces a	and filtration			
	6.6.1	Formulation of the problem and the			
		existence theorem			
	6.6.2	On the differentiability of the function			
		$T \to (v(T), p(T))$			
	6.6.3	Differentiability of the functionals Φ_i and			
		necessary optimality conditions			
6.7	Proble	ms of the optimal shape of a canal			
	6.7.1	Set of controls and diffeomorphisms 472			
	6.7.2	Optimization problems			
6.8	A problem of the optimal shape of a hydrofoil				
	6.8.1	State equation for a moving hydrofoil			
	6.8.2	Fixed-domain problem and Fréchet differentiability			
		of the functionals			
	6.8.3	Optimization problem			
6.9		and optimization problems with			
	conside	eration for the inertia forces			
	6.9.1	Setting and solution of the direct problem			
	6.9.2	Approximation of the problem $(6.9.10)$ – $(6.9.12)$ 500			
	6.9.3	Some remarks on models, optimization problems,			
		and existence results			
Bibl	iograph	y			
Inde	x				