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Preface

These notes focus on some results concerning propagation of analytic microlocal

singularities for solutions of partial differential equations with characteristics of variable

multiplicity, and on the tools from the theory of higher involutive microlocalization

needed in the proofs.

The simplest model to which the results apply is Maxwell's system for homogeneous

anisotropic optical media (typical examples of which are crystals); then the underlying

physical phenomenon is that of conical refraction.

The main difficulty in the study of operators with characteristics of variable mul

tiplicity stems from the fact that the characteristic variety of such operators is not

smooth. Indeed, near a singular point, a number of constructions usually performed

in the study of the propagation of singularities will degenerate or break down. In the

analytic category, these difficulties can be best investigated from the point of view of

higher microlocalization.

Unfortunately, none of the theories on higher analytic microlocalization in use nowa

days completely covers the situation that we encounter later in the notes. Rather than

adapting or extending the existing theories to the present needs, we have chosen to build

up a new theory from a uniform point of view. Actually the results on higher microlo

calization are sufficiently well delimited from the other results of the text and could

in principle be read independently of the rest. Special emphasis is put, on the other

hand, upon the relation and interplay between the results on propagation of microlocal

singularities and similar results and constructions in geometrical optics.

All microlocalization processes seem to follow some underlying common pattern.

Therefore some overlap with other articles and books on higher microlocalization has

been inevitable. It is also clear in this situation that we have been greatly influenced by

the published literature. However, the point of view on higher microlocalization taken

here is different from both that of KashiwaraLaurent on second microlocalization, and

from that of SjostrandLebeau on higher microlocalisation. In particular, the intersec

tion with the Asterisque volume of Sjostrand and the Birkhauser volume of Laurent (see

references) is reasonably small. Otherwise, the text is based to a large extent on results

that were obtained by the author in the last few years and have not been published in

detail before.
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