Table of Contents

Introduction		
	Chapter 0	
	Preliminaries and Basic Structural Aspects	
§ 0.1	Affine Spaces	1
§ 0.2	Euclidean Spaces	10
§ 0.3	Differential Geometric Structures of Affine and	
	Euclidean Spaces	12
$\S 0.4$	Klein's Erlanger Programme	14
§ 0.5	Motivation. A Short Sketch of the Euclidean Hypersurface	
	Theory	16
$\S 0.6$	Hypersurfaces in the Equiaffine Space	20
§ 0 .7	Structural Motivation for Further Investigations	20
$\S 0.8$	Transversal Fields and Induced Structures	21
§ 0.9	Conormal Fields and Induced Structures	24
§ 0.10	Normalizations	25
§ 0.11	Non-Degenerate Hypersurfaces	26
§ 0.12	Relative Normalizations	27
§ 0.13	Gauss Structure Equations for Conormal Fields	27
$\S 0.14$	Affine Invariance of the Induced Structures	29
§ 0.15	Comparison of Relative Normalizations	31
§ 0.16	Example. The Euclidean Normalization as	
	Relative Normalization	33
§ 0.17	The Equiaffine Normalization	33
§ 0.18	Equiaffine Structure Equations	36
§ 0.19	The Centroaffine Normalization	36
	Chapter 1	
	Local Equiaffine Hypersurface Theory	
§ 1.1	Berwald-Blaschke Metric and Structure Equations	40
§ 1.2	The Affine Normal and the Fubini-Pick Form	43
·	1.2.1 The Affine Normal	43
	1.2.2 The Fubini-Pick Form	48
	1.2.3 Affine Curvatures	50
	1.2.4 Geometric Meaning of the Affine Normal	52
	_	

§ 1.3	The Equiaffine Conormal	50
	1.3.1 Properties of the Equiaffine Conormal	50
	1.3.2 The Affine Support Function	59
§ 1.4	Hyperquadrics	60
	1.4.1 Hyperquadrics	60
	1.4.2 Hypersurfaces with $J = 0$	66
§ 1.5	Integrability Conditions and	
	the Local Fundamental Theorem	71
	1.5.1 Relations between the Coefficients	72
	1.5.2 The Integrability Conditions	72
	1.5.3 The Fundamental Theorem	76
	Chapter 2	
	Affine Hyperspheres	
§ 2.1	Definitions and Basic Results for Affine Hyperspheres	85
	2.1.1 Definition of Affine Hyperspheres	85
	2.1.2 Differential Equations for Affine Hyperspheres	87
	2.1.3 A Composition Formula	93
§ 2.2	Affine Hyperspheres with Constant Sectional Curvature	95
	2.2.1 Examples	95
	2.2.2 Local Classification of Two-dimensional Affine Sphere	S
	with Constant Scalar Curvature	99
	2.2.3 Generalization to Higher Dimensions	102
§ 2.3	Affine Completeness and Euclidean Completeness	110
§ 2.4	Affine Complete Elliptic Affine Hyperspheres	118
§ 2.5	A Differential Inequality on	
0.0	a Complete Riemannian Manifold	121
§ 2.6	Estimates of the Ricci Curvatures of Affine Complete Affine	
627	Hyperspheres of Parabolic or Hyperbolic Type	126
§ 2.7	Classification of Complete Hyperbolic Affine Hyperspheres	130
	2.7.1 Euclidean Complete Affine Hyperspheres of	
	Hyperbolic Type	130
	2.7.2 Affine Complete Affine Hyperspheres of	
	Hyperbolic Type	136
e 3 o	2.7.3 Proof of the Second Part of the Calabi Conjecture	144
§ 2.8	Complete Hyperbolic Affine 2-Spheres	151
§ 2.9	Appendix: Recent Results about Affine Spheres	161
	Chapter 3	
	Rigidity and Uniqueness Theorems	
§ 3.1	Integral Formulas for Affine Hypersurfaces and Their Applications	163
		103

T_{α}	h	۱۵.	~£	Contents
14	D.	ıc	O1	Comens

		٠	
ι	1	1	1

	3.1.1 Minkowski's Integral Formulas for	
	Affine Hypersurfaces	164
	3.1.2 Characterization of Ellipsoids	165
	3.1.3 Some Further Characterizations of Ellipsoids	169
	3.1.4 Global Solutions of a Differential Equation of	
	Schrödinger Type	174
	3.1.5 Rigidity Theorems for Ovaloids	176
	3.1.6 Some Results for Hypersurfaces with Boundary	179
§ 3.2	The Index Method	188
	3.2.1 Fields of Line Elements and Nets	188
	3.2.2 Vekua's System of Partial Differential Equations	193
	3.2.3 Affine Weingarten Surfaces	195
	3.2.4 An Affine Analogue of the Cohn-Vossen Theorem	204
	Chapter 4	
	Variational Problems and Affine Maximal Surfaces	
§ 4.1	Variational Formulas for Higher Affine Mean Curvatures	208
§ 4.2	Affine Maximal Surfaces	215
	4.2.1 Definitions and Fundamental Results	215
	4.2.2 An Affine Analogue of the Weierstrass Representation	220
	4.2.3 Computation of ΔJ	226
	4.2.4 The Gauss Map	232
	Chapter 5	
	Geometric Inequalities	
§ 5.1	The Affine Isoperimetric Inequality	237
	5.1.1 Steiner Symmetrization	238
	5.1.2 A Characterization of Ellipsoids	241
	5.1.3 The Affine Isoperimetric Inequality	243
§ 5.2	Inequalities for Higher Affine Mean Curvatures	245
	5.2.1 Mixed Volumes	245
	5.2.2 Integral Inequalities for Curvature Functions	247
	5.2.3 Total Centroaffine Area	251
	Appendix 1	
	Basic Concepts from Differential Geometry	
§ A 1.1	Tensors and Exterior Algebra	253
	A1.1.1 Tensors	253
	A1.1.2 Exterior Algebra	256

§A1.2	Differe	ntiable Manifolds	260	
	A1.2.1	Differentiable Manifolds and Submanifolds	260	
	A1.2.2	Tensor Fields on Manifolds	264	
	A1.2.3	Integration on Manifolds	267	
§A1.3		Connections and Riemannian Geometry.		
	Basic F		269	
	A1.3.1	Affine Connections	269	
	A1.3.2	Riemannian Manifolds	274	
	A1.3.3	Manifolds of Constant Curvature.		
		Einstein Manifolds	278	
	A1.3.4	Exponential Mapping and Completeness	280	
§ A1.4	Green's	s Formula	283	
		Appendix 2		
		Laplacian Comparison Theorem	285	
Bibliog	raphy		291	
List of S	List of Symbols			
Index				