Series on Advances in Mathematics for Applied Sciences - Vol. 52

PLATES, LAMINATES AND SHELLS

Asymptotic Analysis and Homogenization

T Lewiński

Warsaw University of Technology, Poland

J J Telega

Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Published by

World Scientific Publishing Co. Pte. Ltd.
P O Box 128, Farrer Road, Singapore 912805
USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data Lewiński, T.

Plates, laminates, and shells : asymptotic analysis and homogenization / T. Lewiński, J.J. Telega. p. cm. -- (Series on advances in mathematics for applied sciences : vol. 52) Includes bibliographical references and index. ISBN 9810232063 1. Elastic plates and shells. 2. Homogenization (Differential equations) I. Telega, Józef Joachim. II. Title. III. Series. QA935.L39 1999 531'.382--dc21 99-40193 CIP

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Copyright © 2000 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

Contents

Introduction	1
1. Function spaces, convex analysis, variational convergence	1
1.1. Function spaces: L ^p and Sobolev spaces	1
1.1.1. Lebesgue spaces L^p	1
1.1.2. Sobolev spaces and trace operators	4
1.2. Elements of convex analysis and duality, minimization theorems,	
multivalued mappings	. 14
1.2.1. Convex sets and functions	. 14
1.2.2. Minimization theorems	. 21
1.2.3. Normal integrands, integral functionals and Rockafellar's theorem	. 25
1.2.4. Quasiconvexity and A-quasiconvexity	27
1.2.5. Elements of the duality theory	30
1.2.6. Set-valued maps	. 34
1.3. Variational convergence of sequences of operators and functionals	. 35
1.3.1. G-convergence	36
1.3.2. <i>H</i> -convergence and the energy method	37
1.3.3. Two-scale convergence	. 45
1.3.4. Γ-convergence	47
1.3.5. Γ -convergence of sequence of nonconvex functionals convex	
in highest-order derivatives: non-uniform homogenization	49
1.3.6. Γ-convergence and duality	. 52
1.3.7. Convergence of sets in Kuratowski's sense	64
1.4. Two approximation results	. 65
1.5. An augmented Lagrangian method for problems with unilateral constraints	. 78
CHAPTER II, ELASTIC PLATES	

Introduction	85
2. Three-dimensional analysis and effective models of composite plates	88
2.1. Equilibrium problem of a periodic plate	88
2.2. Family of problems (P_{ϵ})	90
2.3. Asymptotic analysis. Effective moduli and local problems	94
2.4. Case of transverse symmetry 1	02
2.5. Centrosymmetry of the periodicity cell 1	03
2.6. On computing effective stiffnesses 1	04
2.7. Case of moderately thick periodicity cells 1	05
2.8. Case of thin periodicity cells. Derivation by imposing Kirchhoff's	
constraints 1	09
2.9. Case of transversely slender periodicity cells of constant thickness 1	12

	2.10.	Γ -convergence and justification of three models of thin, transversely	
		inhomogeneous and anisotropic plates with constant thickness	116
		2.10.1. Basic relations	116
		2.10.2. Justification of the effective plate model of Sec. 2.8	
		by passing to zero: $e \to 0$ and then $\varepsilon \to 0$	120
		2.10.3. Justification of the effective plate model of Sec. 2.9	
		by passing to zero: $\varepsilon \to 0$ and next $e \to 0$	136
		2.10.4. Justification of the effective plate model of Sec. 2.3	
		by passing to zero: $e \rightarrow 0$ and $\varepsilon \rightarrow 0$ simultaneously	138
	2.11.	Effective stiffnesses of longitudinally homogeneous plates	151
3.	Thin	plates in bending and stretching	153
	3.1.	Kirchhoff type description	153
	3.2.	Asymptotic homogenization. In-plane scaling approach	157
	3.3.	Refined scaling approach	164
	3.4.	Variational formulae for effective stiffnesses	166
	3.5.	Correctors	168
	3.6.	Variational formulae for effective compliances. Dual effective potential	172
	3.7.	Transversely symmetric plates periodic in one direction	173
	3.8.	Ribbed plates. Bending problem	175
		3.8.1. Formula of Francfort and Murat for stiffnesses	176
		3.8.2. Ribbed plates of higher rank with the stronger phase taken	
		as an envelope	179
		3.8.3. Formula of Lurie-Cherkaev-Fedorov for stiffnesses	181
		3.8.4. Formula of Francfort-Murat-type for compliances	182
	3.9.	Ribbed plates. Plane elasticity problem	183
		3.9.1. Formula of Francfort and Murat for stiffnesses	183
		3.9.2. Formula of Francfort and Murat-type for compliances	185
	3.10.	Plates periodic with respect to a curvilinear parametrization.	
		Non-uniform homogenization	188
	3.11.	Effective bending stiffnesses of plates with quadratic inclusions	190
	3.12.	Perforated plates	195
	3.13.	Plates stiffened with rigid inclusions	200
4.	Nonli	inear behavior of plates	203
	4.1.	Von Kármán equations	203
	4.2.	Homogenization	205
	4.3.	Bifurcation and homogenization of perforated von Kármán plates	209
		4.3.1. Homogenization of perforated von Kármán plates	209
		4.3.2. Bifurcation of von Kármán plates: basic results	213
		4.3.3. Bifurcation points of the homogenized plate and the	
		linearized problem	221
		4.3.4. Bifurcating branches of perforated and homogenized plates	223

Contents

5.	Mod	erately thick transversely symmetric plates	235
	5.1.	Reissner-Hencky model	235
	5.2.	The in-plane scaling-based asymptotic homogenization	236
	5.3.	The refined scaling analysis	239
	5.4.	Justification of the refined scaling approach	242
		5.4.1. Basic relations and auxiliary results	243
		5.4.2. Γ -convergence of the sequence $\{J_{\varepsilon} - L_{\varepsilon}\}_{\varepsilon > 0}$	247
	5.5.	Dual homogenization	254
	5.6.	Orthotropic plates periodic in one direction	261
		5.6.1. Effective stiffnesses according to the in-plane scaling approach	262
		5.6.2. Effective stiffnesses according to the refined scaling approach	263
		5.6.3. Effective torsional stiffness of plates of step-wise varying thickness	266
		5.6.4. Formula of Tartar-Francfort-Murat type for effective stiffnesses	
		of ribbed plates. In-plane scaling approach	269
	5.7.	Other linear and nonlinear models of plates with moderate thickness.	
		Homogenization study	270
		5.7.1. Reissner's model	271
		5.7.2. A refined theory of moderately thick plates undergoing	
		moderately large deflections	275
		5.7.3. Homogenization study	278
6	Sand	wich plates with soft core	287
υ.	61	Hoff's theory	287
	6.2	Effective stiffnesses in the periodic case	291
	63	Reissner's approximation and relevant homogenization formulae.	293
_	0.5.		2004
7.	Com	ments and didliographical notes	294
Ch	apter	III. ELASTIC PLATES WITH CRACKS	
Int	roduc	tion	303
~			204
ð.	Unit		304
	8.1.	Cracking modes	205
	8.2.		303
	8.3.	Justification: 1 -convergence	310
9.	Unila	teral cracks in plates with transverse shear deformation	315
	9.1.	Admissible cracking modes	315
	9.2.	Periodic layout of cracks. Homogenization	319
	9.3.	Justification: variational inequality (9.2.1) and the energy method	323
10.	Part-	through the thickness cracks	339
	10.1.	Two-layer description	339
	10.2.	In-plane scaling and effective model	345
	10.3.	The study of convergence	349

1	0.4.	Dual homogenization	358
1	0.5.	Passage to classical models of cracked plates	363
1	0.6.	Refined scaling and effective model	364
1	0.7.	Plates with aligned cracks	369
1	0.8.	Cracks of arbitrary position. Three-dimensional local analysis	378
		10.8.1. Asymptotic analysis	378
		10.8.2. Justification by Γ-convergence	384
11. S	tiffn	ess loss of cracked laminates	388
1	1.1.	Two-dimensional model of transversely symmetric laminates	
		in stretching and in-plane shearing	388
1	1.2.	Modelling the unilateral crack within the internal layer	394
1	1.3.	Regular crack systems	396
1	1.4.	Moderately thick laminate weakened by transverse cracks of high density.	
		$\mathbf{Model}\ (h, l_0) \ \ldots \ $	397
1	1.5.	Thin laminate with transverse cracks of high density. Model (h_0, l_0)	401
1	1.6.	Thin laminate weakened by transverse cracks of arbitrary density.	
		Model (h_0, l)	403
1	1.7.	Justification by I'-convergence and duality	409
		11.7.1. Moderately thick laminate	410
	• •	11.7.2. Refined scaling and I-convergence	411
1	1.8.	Application of the augmented Lagrangian method to solving local	420
1	10	problems with unilateral constraints	432
1	1.9.	Case of aligned parallel intralaminar cracks. Effective characteristics	424
	10	according to the (n_0, t) approach	434
11	.10.	Degradation of effective stiffnesses of faminates with aligned parallel	440
	11	cracks. The refined scaling approach-model (n_0, l)	442
11	.11.	Degradation of effective stiffnesses of familiates $[0_n/90_m]_s$.	110
		11.11.1. Score of the section	440
		11.11.2 $\left[0^{\circ}/00^{\circ}\right]$ glass/enoxy laminate tested by Highsmith	440
		and Reifsnider (1982)	449
		11 11 3 $\left[0^{\circ}/90^{\circ}\right]$, glass/enoxy laminate tested by Ogin et al. (1985)	455
		11 11 4 $[0^{\circ}/90^{\circ}]$, graphite/epoxy laminate tested by Groves (1986)	455
		11 11 5 $[0^{\circ}/90^{\circ}]_{\circ}$ glass/epoxy laminates tested by Smith and Wood (1990)	458
		11.11.6. $[0^{\circ}/90^{\circ}]$, carbon/epoxy laminate tested by Smith and Wood (1990)	458
11	.12.	Stress distribution around crack tips	459
11	.13.	Crack spacing as a function of the averaged applied stress	462
12. C	Com	ments and bibliographical notes	464

Ch	apter IV. ELASTIC-PERFECTLY PLASTIC PLATES	
Int	roduction	169
13.	Mathematical complements, homogenization of functionals with linear	460
	13.1. Functional setting: spaces W ^{1,1} , W ^{2,1} , LD, BV, BD, and HB 13.2. Convex functions and functionals of a measure 13.3. General homogenization theorems for functionals with linear growth 13.4. Γ-convergence and Dirichlet boundary conditions, relaxation 13.4.1. Thin Kirchhoff plates made of Hencky material 13.4.2. Moderately thick plates, refined scaling 13.4.3. On von Kármán plates made of Hencky material	470 478 483 494 494 496 497
14.	Homogenization of plates loaded by forces and moments	498 498
	plates with constant thickness	516 516
	$e \rightarrow 0$ and next $\varepsilon \rightarrow 0$ 14.2.3. Derivation of the second effective plate model: $\varepsilon \rightarrow 0$ and next $e \rightarrow 0$	521 529
	14.2.4. Derivation of the third effective plate model: $e \rightarrow 0$ and $\varepsilon \rightarrow 0$ simultaneously	530
15.	Comments and bibliographical notes	532
Ch	apter V. ELASTIC AND PLASTIC SHELLS	
Int	roduction	535
16.	Linear and nonlinear models of elastic shells	535 535 541 545 547 548
17.	Homogenization of stiffnesses of thin periodic elastic shells. Linear approach	551
	 17.1. Koiter's shell. Asymptotic analysis and the convergence theorem	551 557 560 567 567 568

18. Homogenized properties of thin periodic elastic shells undergoing moderately large rotations around tangents 574 19. Perfectly plastic shells 575 20. Comments and bibliographical notes 576 Chapter VI. APPLICATION OF HOMOGENIZATION METHODS IN OPTIMUM DESIGN OF PLATES AND SHELLS 58
19. Perfectly plastic shells 57 20. Comments and bibliographical notes 57 Chapter VI. APPLICATION OF HOMOGENIZATION METHODS 57 IN OPTIMUM DESIGN OF PLATES AND SHELLS 58
20. Comments and bibliographical notes
Chapter VI. APPLICATION OF HOMOGENIZATION METHODS IN OPTIMUM DESIGN OF PLATES AND SHELLS Introduction 58
21. Mathematical complements
21.1. Alternative representation of second and fourth order tensors
21.2. Y-transformation
21.3. Fourier representation of Y-periodic functions
21.4. Examples of quasiconvex and quasiaffine functions
21.4.1. A quasiaffine function of the strain tensor κ
21.4.2. A quasiaffine function of two strain tensors
21.4.3. An aggregate form of the previous results
21.4.4. A quasiaffine function of the stress tensor m
21.4.5. A quasiaffine function of the stress tensor <i>n</i>
21.4.6. A quasiaffine function of two stress tensors
21.4.7. An aggregate form of the two previous results
21.5. Harmonic mean as a lower bound for effective energy
21.6. Elements of the theory of Young measures
22. Two-phase plate in bending. Hashin-Shtrikman bounds
22.1. Lower bound for the Kelvin modulus
22.2. Upper bound for the Kelvin modulus
22.3. Lower bound for the Kirchhoff modulus
22.4. Upper bound for the Kirchhoff modulus
22.5. Attainability of Hashin-Shtrikman bounds. The Francfort – Murat
construction
23 Two-phase plate. Hashin-Shtrikman bounds for the in-plane problem 61
23.1. The upper and lower bounds for the Kelvin modulus
23.2. The upper and lower bounds for the Kirchhoff modulus
23.3. Attainability of Hashin-Shtrikman bounds
23.4. Summary of the main results

Contents

24.	Explicit formulae for effective bending stiffnesses and compliances	
	of ribbed plates	622
	24.1. First rank ribbed structure	622
	24.2. Second rank ribbed structure with soft phase taken as a core	624
	24.3. Second rank ribbed structure with the strong phase taken as a core	629
25.	Explicit formulae for effective membrane stiffnesses and compliances	
	of ribbed plates	632
	25.1. First rank ribbed plates	632
	25.2. Second rank ribbed plates	633
26.	Thin bending two-phase plates of minimum compliance	634
	26.1. Ill-posedness of the initial formulation	634
	26.2. Relaxation	637
	26.3. Bounding the potential \mathcal{W}^* by the translation method	
	of Cherkaev-Gibianskii	641
	26.4. Attainability of the translation bound	646
	26.4.1. Regime (2): $\zeta_M \in [\zeta_2, \zeta_1]$	646
	26.4.2. Regime (3): $\zeta_M \leq \zeta_2$	648
	26.4.3. Regime (1): $\zeta_M \ge \zeta_1$	649
	26.5. Physical interpretation of the relaxed problem	651
	26.6. Primal formulation of the relaxed problem	653
	26.7. On the shape design	661
	26.8. Square clamped plates of minimum compliance	666
	26.9. Optimal perforated plates of small volume	669
27.	Minimum compliance problem for thin plates of varying thickness:	
	application of Young measures	671
28.	Thin shells of minimum compliance	678
	28.1. Setting of the problem	678
	28.2. Relaxation	681
	28.3. Primal formulation of the relaxed problem	682
	28.4. On the in-plane minimum compliance problem of two-phase plates	684
29.	Truss-like Michell continua	688
	29.1. Structures of minimum weight. Discrete versus continuum formulations	688
	29.2. Dual formulation	691
	29.3. A symmetric cantilever problem	694
30.	Comments and bibliographical notes	696
Ref	erences	703
Ind	ex	733