

Number 567

On Finite Groups and Homotopy Theory

Ran Levi

November 1995 • Volume 118 • Number 567 (end of volume) • ISSN 0065-9266

Providence, Rhode Island

Contents

Abstract	vii
Preface	ix
Acknowledgements	xiii
Part 1	
The Homology and Homotopy Theory Associated with $\Omega B\pi_p^\wedge$	
Chapter 1. Introduction	3
1.1. Statement of Results	3
1.2. Organization of Part 1	6
Chapter 2. Preliminaries	7
2.1. Some Facts on the R-Completion Functor	7
2.2. Mod-R Acyclic Spaces and Proposition 1.1.2	7
2.3. The Quillen "Plus" Construction	8
Chapter 3. A model for $S_*\Omega X_R^{\wedge}$	9
3.1. An Algebraic "Plus" Construction	9
3.2. Proof of Theorems 1.1.2 and 1.1.3	12
Chapter 4. Homology Exponents for $\Omega B \pi_p^{\wedge}$	13
4.1. Extended Maps and Homotopies	13
4.2. Proof of Theorem 1.1.1	15
Chapter 5. Examples for Homology Exponents	21
5.1. Groups with a Dihedral Sylow 2-Subgroup	21
5.2. Groups with a Semidihedral Sylow 2-Subgroup	23
Chapter 6. The Homotopy Groups of $B\pi_p^{\wedge}$	25
6.1. Some Basic Facts	25
6.2. Proof of Theorem 1.1.4	27
6.3. Examples for Homotopy Exponents	28

vi CONTENTS

•	
Chapter 7. Stable Homotopy Exponents for $\Omega B\pi_p^{\wedge}$	31
7.1. Preliminaries on the Transfer	31
7.2. Proof of Theorem 1.1.5	33
7.3. The Non-Existence of Exponents in $\pi_*^s B \pi_p^{\wedge}$	35
Part 2	
Finite Groups and Resolutions by Fibrations	
Chapter 1. Introduction	43
1.1. Statement of Results	43
1.2. Organization of Part 2	46
Chapter 2. Preliminaries	47
2.1. Universal Central Extensions	47
2.2. Uniqueness of Homotopy Type, Special Case	47
2.3. Homotopy decomposition of Classifying Spaces	49
2.4. The Neisendorfer Fibre Square Lemma	49
Chapter 3. Resolutions by Fibrations	51
3.1. Definition and Basic Examples	51
3.2. A Fibration Lemma	53
3.3. The mod- p Cohen Conjecture	54
Chapter 4. Sporadic Examples	57
4.1. Groups with a Dihedral Sylow 2-Subgroup	57
4.2. Groups with a Semidihedral Sylow 2-Subgroup	67
Chapter 5. Groups of Lie Type and S -Resolutions	77
5.1. Preliminary Theorems	77
5.2. A Spherical Fibre Square	78
5.3. Proof of Theorem 1.1.3	81
5.4. The Groups $SL_n(\mathbb{F}_q)$ and $Sp_{2n}(\mathbb{F}_q)$	83
5.5. Proof of Theorem 1.1.6 and Examples	85
Chapter 6. Clark-Ewing Spaces and Groups	87
6.1. Construction	87
6.2. Spherical Resolutions of Loop Spaces on Clark-Ewing Spaces	89
6.3. Resolutions by Cohomological Considerations	89
6.4. Some Preliminaries from Representation Theory	91
6.5. Clark-Ewing Groups	92
Chapter 7. Discussion	95
References	97