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3.29 Deformation retraction of Möbius band onto the center circle 208
3.30 The surface T (2)\{p} as a quotient space 209
3.31 Deformation-retracting S(3) onto S1 ∨ S1 210
3.32 R2\{x1 ∪ x2 ∪ x3} deformation-retracts to W3 212
3.33 A deformation retraction 213
3.34 Dunce hat 220
3.35 Surfaces for Exercise 3.9.6 221
3.36 Surfaces for Exercise 3.9.7 221
3.37 Subdivision when k = 3 223
3.38 Reparametrizing a homotopy 224
3.39 Isomorphism α∗ : π1(X,α(1)) → π1(X,α(0)) 227
3.40 f ∼ f ′ implies α ∗ f ∗ ᾱ ∼ α ∗ f ′ ∗ ᾱ 227
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