Topology: A Geometric Approach

Terry Lawson

Mathematics Department, Tulane University, New Orleans, LA 70118

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

> Published in the United States by Oxford University Press Inc., New York

> > © Oxford University Press, 2003

The moral rights of the authors have been asserted Database right Oxford University Press (maker)

> First published 2003 First published in paperback 2006

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this book in any other binding or cover and you must impose the same condition on any acquirer

> British Library Cataloguing in Publication Data Data available

Library of Congress Cataloging in Publication Data

Lawson, Terry, 1945– Topology : a geometric approach / Terry Lawson. (Oxford graduate texts in mathematics ; 9) Includes bibliographical references and index. 1. Topology. I. Title. II. Series.

QA611.L36 2003 514-dc21 2002193104

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain on acid-free paper by Biddles Ltd, King's Lynn

ISBN 0-19-851597-9 978-0-19-851597-5 ISBN 0-19-920248-6 (Pbk.) 978-0-19-920248-5 (Pbk.)

 $1 \ 3 \ 5 \ 7 \ 9 \ 10 \ 8 \ 6 \ 4 \ 2$

Contents

List of Figures

xi

I A Geometric Introduction to Topology

1	Bas	ic point set topology	3
	1.1	Topology in \mathbb{R}^n	3
	1.2	Open sets and topological spaces	7
	1.3	Geometric constructions of planar homeomorphisms	15
	1.4	Compactness	22
	1.5	The product topology and compactness in \mathbb{R}^n	26
	1.6	Connectedness	30
	1.7	Quotient spaces	37
	1.8	The Jordan curve theorem and the Schönflies theorem	44
	1.9	Supplementary exercises	49
2	The	e classification of surfaces	62
	2.1	Definitions and construction of the models	62
	2.2	Handle decompositions and more basic surfaces	68
	2.3	Isotopy and attaching handles	77
	2.4	Orientation	88
	2.5	Connected sums	98
	2.6	The classification theorem	106
	2.7	Euler characteristic and the identification of surfaces	119
	2.8	Simplifying handle decompositions	126
	2.9	Supplementary exercises	133
3	The	e fundamental group and its applications	153
	3.1	The main idea of algebraic topology	153
	3.2	The fundamental group	160
	3.3	The fundamental group of the circle	167
	3.4	Applications to surfaces	172
	3.5	Applications of the fundamental group	179
	3.6	Vector fields in the plane	185

3.7	Vector fields on surfaces	194
3.8	Homotopy equivalences and π_1	206
3.9	Seifert–van Kampen theorem and its application to surfaces	215
3.10	Dependence on the base point	226
3.11	Supplementary exercises	230

II Covering Spaces, CW Complexes and Homology

4	Cov	ering spaces	243
	4.1	Basic examples and properties	243
	4.2	Conjugate subgroups of π_1 and equivalent covering spaces	248
	4.3	Covering transformations	254
	4.4	The universal covering space and quotient covering spaces	256
5	CW	complexes	260
	5.1	Examples of CW complexes	260
	5.2	The Fundamental group of a CW complex	266
	5.3	Homotopy type and CW complexes	269
	5.4	The Seifert–van Kampen theorem for CW complexes	275
	5.5	Simplicial complexes and Δ -complexes	276
6	Hon	nology	281
	6.1	Chain complexes and homology	281
	6.2	Homology of a Δ -complex	283
	6.3	Singular homology $H_i(X)$ and the isomorphism	
		$\pi_1^{ab}(X,x) \simeq H_1(X)$	286
	6.4	Cellular homology of a two-dimensional CW complex	292
	6.5	Chain maps and homology	294
	6.6	Axioms for singular homology	300
	6.7	Reformulation of excision and the Mayer–Vietoris exact	
		sequence	304
	6.8	Applications of singular homology	308
	6.9	The degree of a map $f: S^n \to S^n$	310
	6.10	Cellular homology of a CW complex	313
	6.11	Cellular homology, singular homology, and Euler	
		characteristic	320
	6.12	Applications of the Mayer–Vietoris sequence	323
	6.13	Reduced homology	328
	6.14	The Jordan curve theorem and its generalizations	329
	6.15	Orientation and homology	333
	6.16	Proof of homotopy invariance of homology	345
	6.17	Proof of the excision property	350
Ap	pend	ix Selected solutions	355
Re	feren	ces	383
Ind	Index		385

List of Figures

1.1	Balls are open	5
1.2	Open and closed rectangles	5
1.3	Comparing balls	9
1.4	Similarity transformation	17
1.5	PL homeomorphism between a triangle and a rectangle	18
1.6	Basic open sets for disk and square	20
1.7	Annulus	21
1.8	A tube $U_x \times Y \subset W_x$	27
1.9	The topologist's sine curve—two views	35
1.10	Saturated open sets $q^{-1}(U)$ about [0] for [0, 1] and \mathbb{R}	38
1.11	Cylinder and torus as quotient spaces of the square	40
1.12	Triangle as a quotient space of the square	41
1.13	Expressing the annulus as a quotient space	42
1.14	Möbius band	43
1.15	A polygonal simple closed curve	45
1.16	Nice neighborhoods	46
1.17	How lines intersect C	46
1.18	A regular neighborhood	47
1.19	Using C_A to connect $x, y \in A$	47
1.20	Moving a vertex	48
1.21	Homeomorphing A to a triangle	49
1.22	Removing excess special vertices	50
1.23	Annular regions	59
1.24	Star	59
1.25	Two pairs of circles	59
1.26	A polygonal annular region	60
1.27	A curvy disk	60
2.1	Stereographic projection	66
2.2	Decomposition of front half of the torus	67
2.3	Views of one-half and three-fourths of the torus	68
2.4	Attaching a 1-handle	69
2.5	Another handle decomposition of the sphere	70
2.6	Handle decomposition of Möbius band	71
2.7	Orientation-reversing path	72
2.8	Decomposition of P	72

2.9	Forming a disk from three disks	73
2.10	Two views of the projective plane	74
2.11	Two homeomorphic half disks	74
2.12	Constructing the torus and Klein bottle	75
2.13	The Klein bottle is a union of two Möbius bands	76
2.14	A handle decomposition of the Klein bottle	76
2.15	Isotoping embeddings	80
2.16	Using an isotopy on the collar	81
2.17	Attaching a 1-handle to one boundary circle	85
2.18	New boundary neighborhoods	85
2.19	Attaching a 1-handle to two boundary circles	86
2.20	Orientation-reversing path via normal vector	88
2.21	Orientation-reversing path via rotation direction	89
2.22	Orienting handles	94
2.23	Orienting handles on the Möbius band and annulus	95
2.24	Orienting the boundary	96
2.25	Some handlebodies	96
2.26	Boundary connected sum $T_{(1)} \amalg S_{(2)}$	99
2.27	Homeomorphism reversing the orientation of the boundary circle	100
2.28	The connected sum $T \# S_{(2)}$	103
2.29	Relating the connected sum and the boundary connected sum	104
2.30	Creating an extra 1- and 2-handle	105
2.31	Examples of surfaces	106
2.32	Boundary sum with a single 0-handle	107
2.33	Models for $T_{(2)}^{(2)}$ and $P_{(3)}^{(3)}$	107
2.34	Sliding handles to get $P_{(1)}^{(2)} \simeq K_{(1)}$	108
2.35	Proving the fundamental lemma via handle slides	109
2.36	Surgery descriptions of T, K	109
2.37	$T \backslash D^2$ and $K \backslash D^2$	110
2.38	Surgery on a Möbius band	110
2.39	Breaking the homeomorphism into pieces	110
2.40	Isotoping away from a torus pair	113
2.41	Freeing an inner handle by isotopy	113
2.42	Sliding handles to put into normal form	114
2.43	Sliding handles to get $P_{(3)}^{(4)}$	115
2.44	Permuting boundary circles of handlebodies	116
2.45	Constructing the homeomorphism	117
2.46	Surfaces for Exercise 2.6.3	118
2.47	Surfaces for Exercise 2.6.4	118
2.48	Identifying a surface	121
2.49	New view of a filled-in surface	121
2.50	Handle decomposition	122
2.51	Surface bounded by a knot	122
2.52	Surfaces to identify for Exercise 2.7.5	123
2.53	Möbius band within identified polygon	124

2.54	Geometrical identification of the surface	124
2.55	Polygon with identifications	125
2.56	Surfaces for Exercise 2.7.7	126
2.57	Surface for Exercise 2.7.8	126
2.58	Surfaces for Exercise 2.7.9	127
2.59	Handle decomposition for the torus	131
2.60	Finding handle decompositions for surfaces	131
2.61	Handle decomposition for an identified polygon	132
2.62	Finding handle decompositions for identified polygons	133
2.63	Expressing a handlebody as a polygon with identifications	134
2.64	Not a 1-manifold	135
2.65	Collapsing a wedge in a torus	136
2.66	Removing a smaller Möbius band	137
2.67	Using a Möbius band to reverse orientation on a boundary circle	139
2.68	Orientable handlebodies	140
2.69	Finding a Möbius band	140
2.70	Decompositions with a single 0-handle	141
2.71	Connected sums	142
2.72	Separating arcs and boundary sums	142
2.73	Separating circles and connected sums	142
2.74	Quotients of the disk	143
2.75	Connected sum and words	143
2.76	Orienting a triangulation	144
2.77	Quotient of a hexagon	145
2.78	Surface for Exercise 2.9.70	145
2.79	Surface for Exercise 2.9.71	145
2.80	Surface for Exercise 2.9.72	146
2.81	Surface for Exercise 2.9.73	146
2.82	$T \setminus \{p\}$	147
2.83	Constructing a homeomorphism	147
2.84	Surgery on the torus to get a sphere	150
2.85	Other surgeries on the torus	150
3.1	Homotopic loops	161
3.2	Transitivity of homotopy	161
3.3	Addition of homotopies	163
3.4	$f * e_x \sim f \sim e_x * f$	163
3.5	The inverse of a loop	164
3.6	Associativity of * up to homotopy	165
3.7	$f \sim f' \operatorname{rel} 0.1$	167
3.8	Covering of neighborhood for $p: \mathbb{R} \to S^1$	168
3.9	Lifting a homotopy	170
3.10	Generating loops for $\pi_1(T \# T, x)$	177
3.11	Collapsing $T \setminus D$ to T	178
3.12	Two collapses of $T \# T$ to T	178
3.13	Constructing $g: D^2 \to S^1$	180
3.14	Examples of planar vector fields	186

3.15	Example of canceling singularities	188
3.16	Another example of canceling singularities	189
3.17	Vector fields for Exercise 3.6.3	189
3.18	Merging two singularities	191
3.19	Homotoping the boundary circle	192
3.20	Computing the degree on the boundary	192
3.21	Forming connected sum differentiably	196
3.22	Identified radial lines	197
3.23	Connected sum via gluing along a circle	197
3.24	Identifying vectors for a connected sum	199
3.25	The vector field $v(z) = z^2$	201
3.26	Corresponding vectors in the torus (z)	202
3.27	Corresponding vector fields from $T^{(3)}$	205
3.28	Comb space	207
3 29	Deformation retraction of Möbius hand onto the center circle	208
3 30	The surface $T^{(2)} \setminus \{n\}$ as a quotient space	209
3.31	Deformation-retracting $S_{(2)}$ onto $S^1 \vee S^1$	210
3.32	$\mathbb{R}^2 \setminus \{r_1 \mid r_2 \mid r_3\}$ deformation-retracts to W_2	212
3 33	A deformation retraction	212
3.34	Dunce hat	210
3 35	Surfaces for Exercise 3.9.6	220
3.36	Surfaces for Exercise 3.9.7	221
3.37	Subdivision when $k = 3$	221
3.38	Reparametrizing a homotopy	220
3.39	Isomorphism $\alpha_1 : \pi_1(X, \alpha(1)) \to \pi_1(X, \alpha(0))$	221
3.40	$f \sim f'$ implies $\alpha * f * \bar{\alpha} \sim \alpha * f' * \bar{\alpha}$	227
3 41	Reparametrizing the homotopy	228
3 42	Exercise 3 11 22(a)	233
3 43	$T^{(2)} \setminus C$	200
3 44	A homotopy equivalence	236
41	Constructing a cover $n: T^{(3)} \to T^{(2)}$	245
4.2	A double cover of $S^1 \vee S^1$	246
4.3	A three-fold cover of $S^1 \vee S^1$	247 247
4.4	Conjugate loops	249
4.5	Covering space for Exercise 4.2.6	250
4.6	Covering space for Exercise 4.2.7	250
4.7	Covering space for Exercise 4.2.8	251
4.8	Start of universal cover of $S^1 \vee S^1$	257
5.1	A CW decomposition of the sphere	262
5.2	Figure for Exercise 5.2.3	262
5.2	Figure for Exercise 5.2.6	268
$5.0 \\ 5.4$	Figure for Exercise 5.2.5	268
5.5	Figure for Exercise 5.2.6	268
5.6	Figure for Exercise 5.3.1	200
5.0 5.7	Figure for Exercise 5.3.2	210
5.8	Examples of maximal trees	210
0.0		212

5.9	Collapsing a tree	272
5.10	Figure for Exercise 5.3.6	273
5.11	Figure for Exercises 5.3.10 and 5.3.11	274
5.12	Deformation-retracting $D^2 \times I$ to $S^1 \times I \cup D^2 \times \{0\}$	275
5.13	Simplices must intersect in a common face	277
5.14	Tetrahedron as a simplicial complex	278
5.15	How to (and not to) triangulate the torus	278
5.16	Δ -complex structures for T, K	280
6.1	A homotopy	289
6.2	Constructing D	289
6.3	Diagram showing that \bar{h} is a homomorphism	290
6.4	Constructing D' from D	291
6.5	Computing the cellular homology	293
6.6	Constructing H_1	346
6.7	Barycentric subdivision of Δ_1 and Δ_2	351
6.8	Second barycentric subdivision of Δ_2	351
A.1	Sending a big rectangle to a small one	360