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Preface to the Second Edition 

The first edition of this book was originally published in 1985 under the ti­
tle "Probabilistic Properties of Deterministic Systems." In the intervening 
years, interest in so-called "chaotic" systems has continued unabated but 
with a more thoughtful and sober eye toward applications, as befits a ma­
turing field. This interest in the serious usage of the concepts and techniques 
of nonlinear dynamics by applied scientists has probably been spurred more 
by the availability of inexpensive computers than by any other factor. Thus, 
computer experiments have been prominent, suggesting the wealth of phe­
nomena that may be resident in nonlinear systems. In particular, they 
allow one to observe the interdependence between the deterministic and 
probabilistic properties of these systems such as the existence of invariant 
measures and densities, statistical stability and periodicity, the influence 
of stochastic perturbations, the formation of attractors, and many others. 
The aim of the book, and especially of this second edition, is to present 
recent theoretical methods which allow one to study these effects. 

We have taken the opportunity in this second edition to not only correct 
the errors of the first edition, but also to add substantially new material in 
five sections and a new chapter. Thus, we have included the additional dy­
namic property of sweeping (Chapter 5) and included results useful in the 
study of semigroups generated by partial differential equations (Chapters 
7 and 11) as well as adding a completely new Chapter 12 on the evolution 
of distributions. The material of this last chapter is closely related to the 
subject of iterated function systems and their attractors-fractals. In addi-
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tion, we have added a set of exercises to increase the utility of the work for 
graduate courses and self-study. 

In addition to those who helped with the first edition, we would like to 
thank K. Alligood (George Mason), P. Kamthan, J. Losson, I. Nechayeva, 
N. Provatas (McGill), and A. Longtin (Ottawa) for their comments. 

A.L. 
M.C.M. 



Preface to the First Edition 

This book is about densities. In the history of science, the concept of den­
sities emerged only recently as attempts were made to provide unifying de­
scriptions of phenomena that appeared to be statistical in nature. Thus, for 
example, the introduction of the Maxwellian velocity distribution rapidly 
led to a unification of dilute gas theory; quantum mechanics developed 
from attempts to justify Planck's ad hoc derivation of the equation for the 
density of blackbody radiation; and the field of human demography grew 
rapidly after the introduction of the Gompertzian age distribution. 

From these and many other examples, as well as the formal development 
of probability and statistics, we have come to associate the appearance of 
densities with the description of large systems containing inherent elements 
of uncertainty. Viewed from this perspective one might find it surprising 
to pose the questions: "What is the smallest number of elements that a 
system must have, and how much uncertainty must exist, before a descrip­
tion in terms of densities becomes useful and/ or necessary?" The answer is 
surprising, and runs counter to the intuition of many. A one-dimensional 
system containing only one object whose dynamics are completely deter­
ministic (no uncertainty) can generate a density of states! This fact has 
only become apparent in the past half-century due to the pioneering work 
of E. Borel [1909), A. Renyi [1957], and S. Ulam and J. von Neumann. 
These results, however, are not generally known outside that small group 
of mathematicians working in ergodic theory. 

The past few years have witnessed an explosive growth in interest in 
physical, biological, and economic systems that could be profitably studied 
using densities. Due to the general inaccessibility of the mathematical lit-
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erature to the nonmathematician, there has been little diffusion of the con­
cepts and techniques from ergodic theory into the study of these "chaotic" 
systems. This book attempts to bridge that gap. 

Here we give a unified treatment of a variety of mathematical systems 
generating densities, ranging from one-dimensional discrete time trans­
formations through continuous time systems described by integro-partial­
differential equations. We have drawn examples from a variety of the sci­
ences to illustrate the utility of the techniques we present. Although the 
range of these examples is not encyclopedic, we feel that the ideas presented 
here may prove useful in a number of the applied sciences. 

This book was organized and written to be accessible to scientists with 
a knowledge of advanced calculus and differential equations. In various 
places, basic concepts from measure theory, ergodic theory, the geometry 
of manifolds, partial differential equations, probability theory and Markov 
processes, and stochastic integrals and differential equations are introduced. 
This material is presented only as needed, rather than as a discrete unit 
at the beginning of the book where we felt it would form an almost insur­
mountable hurdle to all but the most persistent. However, in spite of our 
presentation of all the necessary concepts, we have not attempted to offer 
a compendium of the existing mathematical literature. 

The one mathematical technique that touches every area dealt with is the 
use of the lower-bound function (first introduced in Chapter 5) for proving 
the existence and uniqueness of densities evolving under the action of a 
variety of systems. This, we feel, offers some partial unification of results 
from different parts of applied ergodic theory. 

The first time an important concept is presented, its name is given in 
bold type. The end of the proof of a theorem, corollary, or proposition is 
marked with a •; the end of a remark or example is denoted by a D. 

A number of organizations and individuals have materially contributed 
to the completion of this book. 

In particular the National Academy of Sciences (U.S.A.), the Polish 
Academy of Sciences, the Natural Sciences and Engineering Research Coun­
cil (Canada), and our home institutions, the Silesian University and McGill 
University, respectively, were especially helpful. 

For their comments, suggestions, and friendly criticism at various stages 
of our writing, we thank J. Belair (Montreal), U. an der Heiden (Bre­
men), and R. Rudnicki (Katowice). We are especially indebted toP. Bugiel 
(Krakow) who read the entire final manuscript, offering extensive mathe­
matical and stylistic suggestions and improvements. S. James (McGill) has 
cheerfully, accurately, and tirelessly reduced several rough drafts to a final 
typescript. 
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