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Foreword 

This book is intended as a partial survey for the elementary parts of an exceptionally 
active field which found a resurgence of interest over the last 8 years, after being 
almost forgotten for 30 years. I have attempted to put together some of the basic 
facts to make it easier for those who don't know the subject, to get some idea where 
it is going in the arithmetic direction, and how to get into it. I hope that the reader 
will find this book a helpful introduction to the Antwerp Conference volumes 
(Springer Lecture Notes). 

It is unfortunate that Hecke's Institute Lecture Notes [H] never received wide 
distribution nor attention, and that they were omitted from his collected works. 
They summarize a great deal of his insights into modular forms. Ogg's book [0], 
for instance, follows almost the same table of contents, the main additions being 
the Petersson scalar product and Weil's theorem on functional equations, which 
Hecke did not have. Considering the progress which has been made since then, 
they have perhaps mostly historical interest, but I feel that even now, it is profitable 
to look at them. They have the merit, among many others, to be brief and accessible. 

Partly because of Hitler and the war, which almost annihilated the German 
school of mathematics, and partly because of the great success of certain algebraic 
methods of Artin, Hasse, Deuring, modular forms and functions were to a large 
extent ignored by most mathematicians for about 30 years after the thirties. 
Eichler, Maass, Petersson, and Rankin were the main exceptions. It is striking that 
except for Petersson, the other three contributed to the International Colloquium 
on Zeta Functions, J. Indian Math. Soc. 1956. Maass was the first to develop a 
Hecke theory for non-holomorphic modular forms. In another direction Siegel in 
the 40's and 50's had some influence on the one variable case by his work on several 
variables, as well as through his Tata Institute notes. Selberg's contributions in the 
50's were to have far reaching influence, but with some delays due to the lack of 
published proofs. 

Taniyama, Shimura and Weil had much to do with bringing modular forms 
back into the forefront of mathematics. The Taniyama-Shimura conjecture relat
ing modular forms of weight 2 and elliptic curves gave impetus to the subject. 
Langlands gave an exceedingly broad framework for the connection between 
modular forms and the arithmetic of number fields, involving what can be called 
non-abelian class field theory as a special case. He recognized the connection 
between Hecke's work on Dirichlet series associated with modular forms and the 
Artin L-functions of finite Galois extensions of the rationals, among others. In 
Jacquet-Langlands, it is shown how the Hecke theory can be viewed as a vast 



VI Foreword 

generalization of Kronecker's theorem that every abelian extension of the ratio
nals is cyclotomic, modulo the "Artin conjecture" (that L-functions are entire), 
and the theory is seen to apply as well to not necessarily holomorphic modular 
forms. Conversely, it was proved by Serre and Deligne that to every holomorphic 
form of weight 1 it is possible to associate an "odd" 2-dimensional representation 
of the Galois group over the rationals. 

Historically, it is very interesting that Heeke noticed explicitly that by the 
Mellin transform, one can associate a modular form to each entire function defined 
by a Dirichlet series having a functional equation of standard type with one gamma 
factor, and conversely. He was looking for such functions. At the same time and 
place that he was writing this, Artin was working with his L-series. But as Tate once 
said, neither was digging what the other was doing, and so they did not notice that 
they were doing two aspects of the same thing. One had to wait till the Langlands 
conjectures for that. 

To me, it is this direction which motivates the study of modular forms, i.e. their 
connections with representations of Galois groups of number fields. 

The contents of this book consists mostly of lectures given at Yale in fall 1974. 
The first two chapters are essential to everything that follows. On the other hand, 
the rest of the book can be read in sections which are independent of each other. 
The first half is organized around Hecke operators, in various settings, mostly for 
SLzCZ), and over the complex numbers, including work of Eichler-Shimura and 
Manin. The second half deals with p-adic properties and the connection with 
Galois groups due to Serre and Swinnerton-Dyer, and distribution theory ac
cording to Iwasawa, touching on the connection with values of zeta functions, and 
p-adic modular forms, as developed by, among others, Klingen, Siegel, Serre, 
Coates, Sinnott, Katz, Manin, Mazur, etc. 

I tried to select topics for which no systematic introduction is yet available. 
Since several introductions are available for the connection between Dirichlet 
series with functional equations and modular forms, this topic has been omitted. 

I am much indebted to Ribet, Serre, and Zagier for their careful reading of the 
manuscript. 

New Haven, in Summer 1976. S. Lang 

I have made no changes in this printing except for a number of corrections, the 
need for which was pointed out to me by many people, whom I thank. 

The theory of modular forms has, of course, expanded enormously since the 
book was written, but I don't think these major developments have impaired the 
value of the book as an introduction. I leave to others the writing of books on 
the connection between modular forms, algebraic geometry, Iwasawa theory, and 

. representation· theory. 

New Haven, 1995 Serge Lang 
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