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Preface 

In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of 
Mathematical Sciences on Diophantine Geometry. I said yes, and here is 
the volume. 

By definition, diophantine problems concern the solutions of equations 
in integers, or rational numbers, or various generalizations, such as 
finitely generated rings over Z or finitely generated fields over Q. The 
word Geometry is tacked on to suggest geometric methods. This means 
that the present volume is not elementary. For a survey of some basic 
problems with a much more elementary approach, see [La 9Oc]. 

The field of diophantine geometry is now moving quite rapidly. Out
standing conjectures ranging from decades back are being proved. I have 
tried to give the book some sort of coherence and permanence by em
phasizing structural conjectures as much as results, so that one has a 
clear picture of the field. On the whole, I omit proofs, according to the 
boundary conditions of the encyclopedia. On some occasions I do give 
some ideas for the proofs when these are especially important. In any 
case, a lengthy bibliography refers to papers and books where proofs 
may be found. I have also followed Shafarevich's suggestion to give 
examples, and I have especially chosen these examples which show how 
some classical problems do or do not get solved by contemporary in
sights. Fermat's last theorem occupies an intermediate position. Al
though it is not proved, it is not an isolated problem any more. It fits in 
two main approaches to certain diophantine questions, which will be 
found in Chapter II from the point of view of diophantine inequali
ties, and Chapter V from the point of view of modular curves and 
the Taniyama-Shimura conjecture. Some people might even see a race 
between the two approaches: which one will prove Fermat first? It 
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is actually conceivable that diophantine inequalities might prove the 
Taniyama-Shimura conjecture, which would give a high to everybody. 
There are also two approaches to Mordell's conjecture that a curve of 
genus ~ 2 over the rationals (or over a number field) has only a finite 
number of rational points: via l-adic representations in Chapter IV, and 
via diophantine approximations in Chapter IX. But in this case, Mordell's 
conjecture is now Faltings' theorem. 

Parts of the subject are more accessible than others because they 
require less knowledge for their understanding. To increase accessibility 
of some parts, I have reproduced some definitions from basic algebraic 
geometry. This is especially true of the first chapter, dealing with quali
tative questions. If substantially more knowledge was required for some 
results, then I did not try to reproduce such definitions, but I just used 
whatever language was necessary. Obviously decisions as to where to 
stop in the backward tree of definitions depend on personal judgments, 
influenced by several people who have commented on the manuscript 
before publication. 

The question also arose where to stop in the direction of diophantine 
approximations. I decided not to include results of the last few years cen
tering around the explicit Hilbert Nullstellensatz, notably by Brownawell, 
and related bounds for the degrees of polynomials vanishing on certain 
subsets of group varieties, as developed by those who needed such esti
mates in the theory of transcendental numbers. My not including these 
results does not imply that I regard them as less important than some 
results I have included. It simply means that at the moment, I feel they 
would fit more appropriately in a volume devoted to diophantine ap
proximations or computational algebraic geometry. 

I have included several connections of diophantine geometry with 
other parts of mathematics, such as PDE and Laplacians, complex anal
ysis, and differential geometry. A grand unification is going on, with 
mUltiple connections between these fields. 

New Haven 
Summer 1990 
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Notation 

Some symbols will be used throughout systematically, and have a more 
or less universal meaning. I list a few of these. 

pa denotes the algebraic closure of a field F. I am trying to replace 
the older notation F, since the bar is used for reduction mod a 
prime, for complex conjugates, and whatnot. Also the notation Fa 
is in line with F" or F nr for the separable closure, or the unramified 
closure, etc. 

# denotes number of elements, so #(S) denotes the number of ele
ments of a set S. 

« is used synonymously with the big Oh notation. If f, 9 are two 
real functions with 9 positive, then f« 9 means that f(x) = O(g(x». 
Then f >x< 9 means f « 9 and 9 « f· 

A[cp] means the kernel of a homomorphism q> when A is an abelian 
group. 

A[m] is the kernel of multiplication by an integer m. 

Line sheaf is what is sometimes called an invertible sheaf. The French 
have been using the expression "faisceau en droites" for quite some 
time, and there is no reason to lag behind in English. 

Vector sheaf will, I hope, replace locally free sheaf of finite rank, both 
because it is shorter, and because the terminology becomes func
torial with respect to the ideas. Also I object to using the same 
expression vector bundle for the bundle and for its sheaf of sections. 
I am fighting an uphill battle on this, but again the French have 
been using faisceau vectoriel, so why not use the expression in 
English, functorially with respect to linguistics? 


