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Foreword 

The purpose of a first course in calculus is to teach the student the basic 
notions of derivative and integral, and the basic techniques and applica
tions which accompany them. The very talented students, with an ob
vious aptitude for mathematics, will rapidly require a course in functions 
of one real variable, more or less as it is understood by professional 
mathematicians. This book is not primarily addressed to them (although 
I hope they will be able to acquire from it a good introduction at an 
early age). 

I have not written this course in the style I would use for an 
advanced monograph, on sophisticated topics. One writes an advanced 
monograph for oneself, because one wants to give permanent form 
to one's vision of some beautiful part of mathematics, not otherwise ac
cessible, somewhat in the manner of a composer setting down his sym
phony in musical notation. 

This book is written for the students to give them an immediate, and 
pleasant, access to the subject. I hope that I have struck a proper com
promise, between dwelling too much on special details and not giving 
enough technical exercises, necessary to acquire the desired familiarity 
with the subject. In any case, certain routine habits of sophisticated 
mathematicians are unsuitable for a first course. 

Rigor. This does not mean that so-called rigor has to be abandoned. 
The logical development of the mathematics of this course from the most 
basic axioms proceeds through the following stages: 

Set theory 
Integers (whole numbers) 
Rational numbers (fractions) 

Numbers (i.e. real numbers) 
Limits 
Derivatives and forward. 
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No one in his right mind suggests that one should begin a course with 
set theory. It happens that the most satisfactory place to jump into the 
subject is between limits and derivatives. In other words, any student is 
ready to accept as intuitively obvious the notions of numbers and limits 
and their basic properties. Experience shows that the students do not 
have the proper psychological background to accept a theoretical study 
of limits, and resist it tremendously. 

In fact, it turns out that one can have the best of both ideas. The 
arguments which show how the properties of limits can be reduced to 
those of numbers form a self-contained whole. Logically, it belongs 
before the subject matter of our course. Nevertheless, we have inserted it 
as an appendix. If some students feel the need for it, they need but read 
it and visualize it as Chapter O. In that case, everything that follows is 
as rigorous as any mathematician would wish it (so far as objects which 
receive an analytic definition are concerned). Not one word need be 
changed in any proof. I hope this takes care once and for all of possible 
controversies concerning so-called rigor. 

Most students will not feel any need for it. My opinion is that 
epsilon-delta should be entirely left out of ordinary calculus classes. 

Language and logic. It is not generally recognized that some of the 
major difficulties in teaching mathematics are analogous to those in 
teaching a foreign language. (The secondary schools are responsible for 
this. Proper training in the secondary schools could entirely eliminate 
this difficulty.) Consequently, I have made great efforts to carry the 
student verbally, so to say, in using proper mathematical language. It 
seems to me essential that students be required to write their mathe
matics papers in full and coherent sentences. A large portion of their 
difficulties with mathematics stems from their slapping down mathe
matical symbols and formulas isolated from a meaningful sentence and 
appropriate quantifiers. Papers should also be required to be neat and 
legible. They should not look as if a stoned fly had just crawled out of 
an inkwell. Insisting on reasonable standards of expression will result in 
drastic improvements of mathematical performance. The systematic use 
of words like "let," "there exists," "for all," "if . .. then," "therefore" 
should be taught, as in sentences like : 

Let f(x) be the function such that ... . 
There exists a number such that .. . . 
For all numbers x with 0 < x < 1, we have .... 
If f is a differentiable function and K a constant such that 
f'(x) = Kf(x), then f(x) = CeKx for some constant C. 

Plugging in. I believe that it is unsound to view "theory" as adversary 
to applications or "computations." The present book treats both as 
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complementary to each other. Almost always a theorem gives a tool for 
more efficient computations (e.g. Taylor's formula, for computing values 
of functions). Different classes will of course put different emphasis on 
them, omitting some proofs, but I have found that if no excessive 
pedantry is introduced, students are willing, and even eager, to under
stand the reasons for the truth of a result, i.e. its proof. 

It is a disservice to students to teach calculus (or other mathematics, 
for that matter) in an exclusive framework of "plugging in" ready-made 
formulas. Proper teaching consists in making the student adept at han
dling a large number of techniques in a routine manner (in particular, 
knowing how to plug in), but it also consists in training students in 
knowing some general principles which will allow them to deal with new 
situations for which there are no known formulas to plug in. 

It is impossible in one semester, or one year, to find the time to deal 
with all desirable applications (economics, statistics, biology, chemistry, 
physics, etc.). On the other hand, covering the proper balance between 
selected applications and selected general principles will equip students to 
deal with other applications or situations by themselves. 

Worked-out problems and exercises. For the convenience of both stu
dents and instructors, a large number of worked-out problems has been 
added in the present edition. Many of these have been put in the answer 
section, to be referred to as needed. I did this for at least two reasons. 
First, in the text, they might obscure the main ideas of the course. 
Second, it is a good idea to make students think about a problem before 
they see it worked out. They are then much more receptive, and will 
retain the methods better for having encountered the difficulties (what
ever they are, depending on individual students) by themselves. Both 
the inclusion of worked-out examples and their placement in the answer 
section was requested by students. Unfortunately, the requirements for 
good teaching, testing, and academic pressures are in conflict here. The 
de facto tendency is for students to object to being asked to think (even 
if they fail), because they are afraid of being penalized with bad grades 
for homework. Instructors may either make too strong requirements on 
students, or may take the path of least resistance and never require any
thing beyond plugging in new numbers in a type of exercise which has 
already been worked out (in class or in the book). I believe that testing 
conditions (limited time, pressures of other courses and examinations) 
make it difficult (if not unreasonable) to test students other than with 
basic, routine problems. I do not conclude that the course should con
sist only of this type of material. Some students often take the attitude 
that if something is not on tests, then why should it be covered in the 
course? I object very much to this attitude. I have no global solution to 
these conflicting pressures. 
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General organization. I have made no great innovations in the exposi
tion of calculus. Since the subject was discovered some 300 years ago, 
such innovations were out of the question. 

I have cut down the amount of analytic geometry to what is both 
necessary and sufficient for a general first course in this type of mathe
matics. For some applications, more is required, but these applications 
are fairly specialized. For instance, if one needs the special properties 
concerning the focus of a parabola in a course on optics, then that is the 
place to present them, not in a general course which is to serve mathe
maticians, physicists, chemists, biologists, and engineers, to mention but 
a few. I regard the tremendous emphasis on the analytic geometry of 
conics which has been the fashion for many years as an unfortunate 
historical accident. What is important is that the basic idea of represent
ing a graph by a figure in the plane should be thoroughly understood, 
together with basic examples. The more abstruse properties of ellipses, 
parabolas, and hyperbolas should be skipped. 

Differentiation and the elementary functions are covered first. Integra
tion is covered second. Each makes up a coherent whole. For instance, 
in the part on differentiation, rate problems occur three times, illustrating 
the same general principle but in the contexts of several elementary func
tions (polynomials at first, then trigonometric functions, then inverse 
functions). This repetition at brief intervals is pedagogically sound, and 
contributes to the coherence of the subject. It is also natural to slide 
from integration into Taylor's formula, proved with remainder term by 
integrating by parts. It would be slightly disagreeable to break this se
quence. 

Experience has shown that Chapters III through VIII make up an 
appropriate curriculum for one term (differentiation and elementary func
tions) while Chapters IX through XIII make up an appropriate curricu
lum for a second term (integration and Taylor's formula). The first two 
chapters may be used for a quick review by classes which are not 
especially well prepared. 

I find that all these factors more than offset the possible disadvantage 
that for other courses (physics, chemistry perhaps) integration is needed 
early. This may be true, but so are the other topics, and unfortunately 
the course has to be projected in a totally ordered way on the time axis. 

In addition to this, studying the log and exponential before integration 
has the advantage that we meet in a special concrete case the situa
tion where we find an antiderivative by means of area: log x is the area 
under l /x between 1 and x. We also see in this concrete case how 
dA(x)ldx = f(x), where A(x) is the area. This is then done again in full 
generality when studying the integral. Furthermore, inequalities involving 
lower sums and upper sums, having already been used in this concrete 
case, become more easily understandable in the general case. Classes 
which start the term on integration without having gone through the 
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part on differentiation might well start with the last section of the 
chapter on logarithms, i.e. the last section of Chapter VIII. 

Taylor's formula is proved with the integral form of the remainder, 
which is then properly estimated. The proof with integration by parts is 
more natural than the other (differentiating some complicated expression 
pulled out of nowhere), and is the one which generalizes to the higher 
dimensional case. I have placed integration after differentiation, because 
otherwise one has no technique available to evaluate integrals. 

I personally think that the computations which arise naturally from 
Taylor's formula (computations of values of elementary functions, com
putation of e, n, log 2, computations of definite integrals to a few deci
mals, traditionally slighted in calculus courses) are important. This was 
clear already many years ago, and is even clearer today in the light of 
the pocket computer proliferation. Designs of such computers rely pre
cisely on effective means of computation by means of the Taylor poly
nomials. Learning how to estimate effectively the remainder term in 
Taylor's formula gives a very good feeling for the elementary functions, 
not obtainable otherwise. 

The computation of integrals like 

or 
rO.1 
Jo e- x2 dx 

which can easily be carried out numerically, without the use of a simple 
form for the indefinite integral, should also be emphasized. Again it 
gives a good feeling for an aspect of the integral not obtainable other
wise. Many texts slight these applications in favor of expanded treatment 
of applications of integration to various engineering situations, like fluid 
pressure on a dam, mainly by historical accident. I have nothing against 
fluid pressure, but one should keep in mind that too much time spent on 
some topics prevents adequate time being spent on others. For instance, 
Ron Infante tells me that numerical computations of integrals like 

f1 sin x dx, 

° x 

which we carry out in Chapter XIII, occur frequently in the study of 
communication networks, in connection with square waves. Each in
structor has to exercise some judgment as to what should be emphasized 
at the expense of something else. 

The chapters on functions of several variables are included for classes 
which can proceed at a faster rate, and therefore have time for additional 
material during the first year. Under ordinary circumstances, these 
chapters will not be covered during a first-year course. For instance, they 
are not covered during the first-year course at Yale. 
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Induction. I think the first course in calculus is a good time to learn 
induction. However, an attempt to teach induction without having met 
natural examples first meets with very great psychological difficulties. 
Hence throughout the part on differentiation, I have not mentioned in
duction formally. Whenever a situation arises where induction may be 
used, I carry out stepwise procedures illustrating the inductive procedure. 
After enough repetitions of these, the student is then ready to see a 
pattern which can be summarized by the formal "induction," which just 
becomes a name given to a notion which has already been understood. 

Review material. The present edition also emphasizes more review 
material. Deficient high school training is responsible for many of the 
difficulties experienced at the college level. These difficulties are not so 
much due to the problem of understanding calculus as to the inability to 
handle elementary algebra. A large group of students cannot automati
cally give the expansion for expressions like 

or (a + b)(a - b). 

The answers should be memorized like the multiplication table. To 
memorize by rote such basic formulas is not incompatible with learning 
general principles. It is complementary. 

To avoid any misunderstandings, I wish to state explicitly that the 
poor preparation of so many high school students cannot be attributed 
to the "new math" versus the "old math." When I started teaching 
calculus as a graduate student in 1950, I found the quasi-totality of 
college freshmen badly prepared. Today, I find only a substantial 
number of them (it is hard to measure how many). On the other hand, 
a sizable group at the top has had the opportunity to learn some 
calculus, even as much as one year, which would have been inconceiv
able in former times. As bad as the situation is, it is nevertheless an 
improvement. 

I wish to thank my colleagues at Yale and others in the past who 
have suggested improvements in the book: Edward Bierstone (University 
of Toronto), Folke Eriksson (University of Gothenburg), R. W. Gatter
dam (University of Wisconsin, Parkside), and George Metakides (Univer
sity of Rochester). I thank Ron Infante for assisting with the 
proofreading. 

I am much indebted to Anthony Petrello for checking worked-out 
examples and answers in past editions. I am also much indebted to 
Allan Altman for a long list of corrections. 

s. Lang 
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