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Introduction

The book is devoted to nonlinear Hamiltonian perturbations of integrable (lin
ear and nonlinear) Hamiltonian systems of large and infinite dimension. Such sys
tems arise in physics in many different ways. As a working hypothesis for theirs
study it was postulated in the physical literature after the works of Boltzmann that
in a "typical situation" their solutions are stochastic. This postulate ("ergodic hy
pothesis") was successfully used to explain many properties of matter. On the other
hand, a lot of numerical experiments starting from the ones of FermiPastaUlam
(see [FPUj, [U]) have shown quite regular recurrent behavior of many solutions of
the systems under consideration (see e.g. [ZIS]). This effect cannot be explained by
means of the Poincare recurrence theorem [AKN] because the Poincare recurrence
time is much larger than the one obtained in the experiments. It seems that the
investigated systems have in abundance quasiperiodic trajectories or trajectories
abnormally close to the quasiperiodic ones (see [LL], [DEGM], [MoJ). These tra
jectories correspond to lowfrequency oscillations of the underlying physical object.
In these oscillations the energy is frozen in low frequencies for a very long time.
So the recurrence effect causes a low rate of stochasticity (the ergodic hypothesis
works now in a slow way). This effect seemed rather strange to the physicists who
observed it.

Our goal in this book is to obtain some general theorem to prove that "many"
quasiperiodic solutions of the unperturbed integrable system, which describes a
conservative physical system with one spatial dimension, persist under perturba
tions. The theorem gives some explanation to the recurrence effect in spatially
onedimensional systems. It proves that in some strict sense the one-dimensional
world "is not very ergodic".

We consider discrete-spectrum systems only. For Hamiltonian systems with
continuous spectrum timequasiperiodic solutions play rather unessential role. To
study nearintegrable continuousspectrum systems various types of averaging theo
rems in time and spacevariables have been developed. We avoid discussing of this
expanded subject.

The main part of the book deals with perturbations of linear Hamiltonian equa
tions, depending on a finitedimensional parameter. However, it turns out that the
problem of persistence quasiperiodic solutions of a nonlinear integrable system can
be reduced to the same problem for a parameterdepending linear equation (after
the reduction the frequency vector of the unperturbed nonlinear quasiperiodic oscil
lation plays a role of the parameter we need). Similar finitedimensional reduction
is wellknown; see Remark in item 1.3 below. We discuss the infinitedimensional
case in item 3.2 of the introduction and refer the reader for details to original papers
(and, hopefully, to the next book of the author). We formulate the main theorem
of the book in a way to simplify its nonlinear applications. Therefore the title of
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the book refer to integrable (linear and nonlinear) systems rather than to linear
systems only.

The introduction is devoted to a rather expanded discussion of the theorem and
its applications. Sometimes the discussion supplements the results from the main
text. We preface the survey of our results with a survey of the finite dimensional
situation.

1. Finite dimensional situation

"Regular" (periodic and quasiperiodic) solutions of 2n-dimensional Hamilto-
nian systems are important for classical and celestial mechanics. Some quite gen-
eral existence theorems for this class of solutions have been obtained. Here we are
interested in perturbation-type results only.

1.1 Lyapunov and Poincare theorems

The first classical results in this direction where the Lyapunov and Poincare
theorems (see [AKN], [SM]), stating that nonresonant periodic solutions of a Hamil-
tonian system survive under Hamiltonian perturbation. More exactly, the Lyapunov
theorem states that if the unperturbed system is a linear Hamiltonian system with
the spectrum

{±iA} U{±/LI, ... ,±/Ln-l},

where ,X E R\{OJ, /Ll, ... ,/Ln-l are complex numbers and

ik'x::f:/Li Vj=l, ... ,n-l, VkEZ,

then the perturbed system has a two-dimensional invariant manifold filled with
periodic solutions of frequencies close to ,X (i.e., of periods close to 27r/,x).

The Poincare theorem states that if a Hamiltonian system has a periodic so-
lution such that the linearization of the corresponding isoenergetic Poincare map
at the fixed point does not have an eigenvalue equal to one, then this solution lies
in two-dimensional invariant manifold filled with periodic solutions. The periodic
solutions and the manifold they fill persist under Hamiltonian perturbations of the
equation.

1.2 Kolmogorov theorem

The second classical result concerning the subject is the Kolmogorov theorem
[Kol] (stated in [Kol] with It scheme of a proof given, and proven in details by Arnold
and Moser), which inspired Arnold and Moser to create a powerful technique to han-
dle nonlinear problems, well known nowadays as KAM (Kolmogorov-Arnold-Moser)
theory; see [A2], [A3], [AA], [Mo], [SM] and bibliographies of the last three books.
Kolmogorov's theorem states that most of the quasiperiodic n-frequency solutions
of a nondegenerate integrable analytical system with n degrees of freedom persist
under analytic Hamiltonian perturbations or, equivalently, Hamiltonian perturba-
tions preserve most of invariant n-tori of a nondegenerate integrable system. Here
integrability means that in a phase space T" X P (P is a bounded n-dimensional
domain) the system has the form:

q= Vh(p), p= 0 ,

Vlll
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(i.e., it has a hamiltonian h depending on the actions pEP only) and the nonde
generacy means that

(3)

Invariant tori of the system (2) are of the form

(4)

and most of them survive in the perturbed system with the hamiltonian h(p) +
eH(q,p),

q= V,,(h(p) +eH(q,p)) , p = -eVqH(q,p) , (5)

if positive e is small enough. That means that for p < 1 there exists a subset
Pe C P such that mes(P\Pe ) t 0 as e t 0, and for p E Pe there exists a map
1:" : T" t T" X P and an nvector w(p) such that Iw(p)  Vh(p)1 5 Ce, for all
q E Tn dist (1:p (q), (q,p)) < eP and the curve

t r7 1:,,(q+ tw(p)) (6)

is a solution of (5).

For other versions and important improvements of the theorem se [AKN],
[Brul], [Bru2], [Her], [Laz], [Mo], [Mol], [P3], [Ru], [Sev], [SZ], [Zl].

1.3 Melnikov theorem

The Lyapunov and Poincare theorems state the persistence of nondegenerate
onedimensional invariant tori (= periodic solutions) under Hamiltonian perturba
tions, and the Kolmogorov theorem states the persistence most of the invariant
Ntori of integrable system with N degrees of freedom. The natural question is if
most of invariant tori of an intermediate dimension n, 1 < n < N, survive under
perturbations. For perturbations of a linear Hamiltonian system with N = n +m
degrees of freedom the question means the following. In the phase space

(n 2,m 1) the Hamiltonian equations

q=A+eV"H, p=-eVqH, z=J(Az+eVzH) ,

(7)

(8)

are considered. Here J(z+, z_) ::::; (-z_, z+), A is a symmetric linear operator in
R2m, eH ::::; eH(q,p,z) is an analytic perturbation and >. E A C Rn is a parameter.
For e = 0 the system (8) has invariant n-tori Tn,m(p) = T" X {p} X {O}, pEP. The
question is if these tori persist in the system (8) for e > o.

Let us denote the spectrum of the operator J A by M ::::; {ILb'''' IL2m}. We
shonld distinguish three cases:

a) (nondegenerate hyperbolic tori) M C G\iR, ILj =f: ILTc Vj =f: k: In this
situation a hyperbolic torus Tn,m(p) persist for most A. That is, for positive e small
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enough and for AE A(E,p),where mesA\A(E,p) -+ 0 (E -+ 0), the equation (8) has
an invariant torus at a distance < EP from Tn,m(p). See [Gr], [Mo], [Zl].

bo) (nondegenerate elliptic tori) M C iR\{O}, fLj :/= fLlc Vj :/= k. This situation is
more complicated. The preservation theorem for the elliptic torus Tn,m(p) for most
Awas formulated by Melnikov [Mel], [Me2]. The complete proof of the theorem was
published only 15 years later by Eliasson [EI], Poschel [PI] and the author [KI], [K2]
(the infinite-dimensional theorems of the last two works are applicable to equations
(8) as well). The proofs given in the papers just mentioned are also valid in the
more general situation:

b) (nondegenerate tori) 0 ¢ M, fLj :/= fLlc Vj:/= k.

In the degenerate case

c) 0 EM or fLj = fLlc for somej:/= k
no preservation theorem for the tori Tn,m(p), formulated in terms of the unperturbed
equation (8) with E = 0 only, is known yet.

Remark. Melnikov theorem (case bo)) remains true for m = 0, too. In such
a case Y = {O} and the theorem asserts the preservation of the n-dimensional
invariant torus T" X {O} of the system with the linear hamiltonian h(p) = A' p,

q A, p=O,

under small analytic Hamiltonian perturbations for most parameters A E A. This
result implies Kolmogorov's theorem as it was formulated above via some simple
substitution; see [Mol], p. 171.1) Conversely, one can easily extract somewhat
different version of Melnikov's theorem with m = 0 from Kolmogorov's theorem.2)
So these two statement are essentially equivalent. This equivalence (we had found it
in the paper [Mol]) was important for our insight into infinite-dimensional problems.

Remark. The equation (8) arises in studies of nearintegrable systems (5)
with n := N near the tori (4) "with some cycles shrinked to zero". It means
that we suppose the system (5) be in the Birkhoff normal form [i.e., in the phase-
space x R: with the usual symplectic structure it has an analytic hamiltonian
h(xi + yi, ... ,x?v + Y?v)) and study its perturbations near an invariant n-torus
{xj + yj = 2Ij}, where Ill- _. ,In> 0 In+l ..• = IN.

Lower-dimensional invariant tori also fill resonant Lagrangian (= half-dimensional)
tori (4), but they always lead to the degenerate case c). In particular, if for

1) In (5) substitute p = a +Vip, q ij, regarding a E P as a parameter of the
substitution. In the tilde-variables the hamiltonian h+EH equals const+Vh(a) .p+
O(Vi), and we get the system (8) with E:= Vi, m = 0, A= Vh(a). As Hessh 0,
then we can treat A E Vh(P) as a new parameter and apply Melnikov theorem.

2) Given a system (8) with m 0, consider the extended phase-space [T" X

P) X [T" X A) = {(q,p,q,p)} and the hamiltonian He = p . p + eH(q,p). The
nondegeneracy assumption (3) holds for the function (p,p) 1---+ p.p and Kolmogorov
theorem (with n := 2n) can be aplied, The invariant tori of the hamiltonian He
have the form Ten X [T" X {ii}), where pEA and Ten C T" X P is an invariant torus
of (8).
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E(p) := Q8h/8pl + ... +Q8h/8pN we have dimQ E(p) = N - 1, then the torus
TN(p) is filled with invariant (N -I)-tori. Near each (N -I)-torus the perturbed
system (5) may be reduced to a system (8) with J A equal to the Jordan 2 X 2-cell
with zero eigenvalue. For more information see [LoJ and references therein.

Famous finite-gap time-quasiperiodic solutions of integrable PDE's form finite-
dimensional invariant tori of the corresponding infinite-dimensional Hamiltonian in-
tegrable systems, obtained by "shrinking" (not "degenerating" !) of half-dimensional
invariant tori. See below and [MeT], [K7].

2. Infinite dimensional systems

2.1 The Problem

In a Hilbert space Z with inner product (-,.) we consider the equation

u(t) = JVK(u(t)), u(t) E Z . (9)

Here J is an antiselfadjoint operator in Z and VK is the gradient of a functional
K relative to the inner product (-,.). In the most interesting situations the linear
operator J, or the nonlinear operator VK, or both of them are unbounded. So one
has to be careful with the equation and its solutions. For the exact definition of
solutions of (9) and for some their properties see [Bre], [Lio] and Part 1 of the main
text. Equation (9) is Hamiltonian if the phase space Z is provided with a symplectic
structure by means of 2-form -(J-ldu,du) (by definition, -(J-ldu,du)[e,TJ] =
-(J-le,TJ) for e,TJ in Z).

In this book we are most interested in equations of the form

u(t) = J(Au(t) +eVH(u(t))) .

This equation is Hamiltonian with the hamiltonian

1
Ke = 2(Au,u) + eH(u) .

(10)

Here A is a selfadjoint linear operator in Z and H is an analytic functional. The lin-
ear operators J, A and the nonlinear operator VH are assumed to be characterized
by their orders dJ , dA and dH • We suppose that

(11)

In the most important examples Z is the Lz-space of square-summable functions on
a segment, and J and A are differential operators. In such a case dJ , dA are the
orders of the differential operators and VH(u) is a variational derivative SH/Su(x).
In particular, if

H(u) = f h(x,u(x)) dx ,

then SH/Su(x) = h,,(x,u(x)) and dH = OJ if the density h depends on integral of
u(x) instead of u(x) itself, then dH < O. To define the orders dJ , dA , dH in a general
case, we include the space Z into a scale of Hilbert spaces. See Part 1 below.
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The assumption (11) implies that equation (10) is quasilinear. This assumption
is rather natural for the study of long-time behavior of solutions because for some
strongly nonlinear Hamiltonian equations (i.e. ones of the form (10) with dH = dA )

it is known that the equations have no nontrivial solutions existing for all time; see
[Lax].

We suppose that J and A commute and that Z admits an orthonormal basis
{cpt Ij I} such that

ACPt = >.tCPt, Jcpy = =F>.fcpj, Vj 1 .

So, in particular, the spectrum of the operator J A is equal to

Let us fix some n 1. The 2n-dimensionallinear space

(12)

ZO = span{cpt 11 $ j $ n}

is invariant for the flow of equation (10) with e = 0, is foliated into invariant n-tori

n

Tn(I) = {L ztCPt Izj' + zj' = 2I; Vj} ,
;=1

I = (I1, ... ,In) E Rt-, and every torus Tn(I) is filled with quasiperiodic solutions
of the equation.v'

One can treat (10) with e = 0 as an infinite chain of free harmonic oscillators
with the frequencies >'1, >.2, .... The solutions lying on the tori Tn(I) correspond
to oscillations with only the first n oscillators being excited. One can treat these
solutions as low-frequency oscillations.

We study the question: under what assumptions do the tori Tn(I) and the
corre&ponding low-frequency quasiperiodic solutions persist in equation (10) for e >

It is convenient to introduce the angle-action variables (q1, ... , qn, P1, ... ,Pn)
in the space z»,

zt +izj = Aexp(iq;), j = 1, ... ,n

(z1 are the coordinates with respect to the basis {cpt 11 $ j $ n}); to denote by

Y = Zezo the closure of span{cpt Ij n+ I} and to pass to the variables (q,p, y),

q=(q1, ... ,qn)ETn, P=(P1, ... ,Pn)ERt., yEY. (13)

3) The assumption (12) may be essentially weakened. See Part 2.7.
4) We remain that a solution u(t) is called quasiperiodic with n frequencies if there

exist a continuous map U : T" --+ Z and n-vector w (called the frequency vector of
the solution) such that u(t) = U(wt). A quasiperiodic solution with one frequency
is periodic, so quasiperiodic solutions represent a natural extension of the class of
periodic solutions.

XlI



Let us denote by I;0 the imbedding

....0 '. T" X RN+ (q p) (q p 0)<J i r s v t »

(we use in Z the coordinates (13)). The invariant space ZO is the image of this map.

In the new variables (13) equation (10) takes the form:

(14)

with
1

'H = 'He w, p+ "2(AY y,y) +eH(q,p,y) .

Here W = JY JIY, AY = A/y, So the operator JYAY has pure
imaginary spectrum I j ?: n + I} and one can easily recognize in the last
equations an infinite-dimensional analogy to the elliptic case of the system (8). The
form of Melnikov's theorem we gave above in Section 1.3 has a natural infinite-
dimensional reformulation. It is remarkable that this reformulation becomes a true
statement after adding essentially just two infinite-dimensional conditions.

2.2 The result

Keeping in mind the applications, we suppose that equation (10) analytically
depends on n outer parameters (al"'" an) = a E 2{, where 2{ is a connected
bounded open domain in R". So A = Aa , H = Ha and = Let us assume
that

11 j,k n} t= O. (15)

This assumption means that we can replace the parameter a by W

Later we refer to w as to the natural parameter of the equation.

We consider a torus Tn(Il , ... ,In) such that h. > 0 Vk.

Theorem 1. Let us suppose that the assumptions (12), (15) hold together
with

1) (qua&ilinearity)

dJ ?: 0, dA ?: 0, d l := dJ +dA ?:1, dJ +dH 0, dJ + dH < d l - 1 ,

2) [spectral a&ymptotic&)

where

for some K > 1;

3) for some N ?: n and M ?: 1 depending on the problem (10) the nonre&onance
relation»

(16)
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hold for all s E ZN such that 1 S lsi S M and ISn+! I+ ... + ISNI S 2.

Then for arbitrary p < 1 and for positive e; small enough there exist a Borel
subset 2t.(I) C 2t and analytic embeddings

: Tn----+Z, a E 2t.(1) , (17)

such that

a) mes(21\2t.(1))/mes2t -+ 0 (e; -+ 0);

b) the map (q,1,a) 1----+ 2:: iq) is Lipschitz and is e;P-close to the map
(q,1,a) 1----+ •

c) for a E 21.(1) the torus is invariant for the equation (10) and is
filled with quasiperiodic solutions ofthe form u.(t) = with a frequency
vector w. E Rn which is Ce-close to w = (.AI, ..• ,.An). All Lyapunov exponents of
these solutions are equal to zero.

Refinement (see Part 3, Theorem 1.1). In the variables (13) the unperturbed
hamiltonian is equal to w· P+ t(AY y,y) and the perturbation is e;Ha(q,p,y). The
statements of the theorem remain true for perturbations of the more general form

This form of the result is suitable for applications to perturbations of nonlinear
problems (see below).

The formulations of our results given above are "almost exact". For the exact
statements see the main text. In Part 2 of the text we state local and global in
a versions of Theorem 1 (Theorem 2.1.1 and 2.2.2 respectively, where the latter
is a rather simple consequence of the former); we give various applications of the
theorems to nonlinear perturbations of linear PDE's and postpone the proof of
Theorem 2.1.1 till Part 3. There we reformulate the theorem in a more general
form to facilitate its applications to nonlinear problems (the reformulated theorem
also includes Refinement given above) and prove the result. In Part 3 we also give
a version of Theorem 1, applicable to the problems with the natural parameter
w = (.A I , ••• , .An) varying in a domain of small diameter of order e", 0 < It < 1. This
result is useful to study small-amplitude oscillations in nonlinear PDE's (see item
3.2.B below).

Remark. If the natural parameterw is chosen for the parameter of the equation
and .Aj does not depend on w for j :::: n + 1, then the assumption 3) is fulfilled
trivially. If in addition dim Z < 00, then the assumptions 1), 2) hold trivially, too.
So for finite-dimensional systems (written in the form (14)) Theorem 1 coincides
with Melnikov's theorem.

As another infinite-dimensional Melnikov-type theorem we mention the result
of Wayne's paper [WI], devoted to the nonlinear string equation with a random
potential. We discuss the approach, the work [WI] is based on, below.

Remark. If the hamiltonian of the perturbation is quadratic, then the the-
orem's statements for all parameters a (and e small enough) immediately result
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from the classical perturbation theory for the discrete spectrum of a linear operator
in Hilbert space (see, e.g. [RS]). In the nonlinear case the theorem's statements
certainly does not hold for all parameters because of resonances between the fre
quencies {Aj}, which occur for some a and give rise to much more complicated
phenomenous. For discussions some of them in the finitedimensional situation see
[AKN] and [Mo].

Remark. As the map (17) is ePclose to the map q ft then the
solutions ue(t) are ePclose to the curves t f-----+ for all t. The vector We
is equal toW+ewl +e2w2+"', where the vector Wl may be obtained via some natural
averaging (see [K4]). So Theorem 1 gives an averaging procedure for lowfrequency
solutions of equation (10) as a simple consequence.

Under the assumptions of the theorem an unperturbed torus Tn(l) with

I E I = {z E Rn IK-1
Zj K Vi}

survives in the equation (10) if e eo and a belongs to a set 21e(l) such that

mes(Qr\Qr.(I») l/(e)mesQr,

where l/(e) . 0 as e . O. The number eo and the function l/(e) do not depend on
I (but depend on K). Let us denote

Ie(a) = {I E I Ia E 21.(I)} .

The torus T" (I) persists if I E I.(a). By Fubini theorem,

(mes21)l mes(I\I.(a»da = (mesQr)l l mes(Qr\21.(I»)d1 mesIl/(e).

(18)
Let us consider the sets

zJc = {(q,I) E ZO IIE I(a)} , Zic = {(q,I) E ZO IIE I.(a)} .

By (18) for a typical a the relative measure of Zic in ZJc is no less then 1  l/(e).
The image of the set Zic under the map

(19)

is invariant for the flow of equation (10) and is filled with quasiperiodic solutions.
The mapping (19) is Lipschitz and ePclose to the embedding So the Hausdorf
measure 1{2n (see [Fe]) of the invariant set as above is no less then

(20)

with some l/l(e) . 0 as e . O. Taking K large enough and e sufficiently small
one can make (20) as large as desired. So we have seen that under the assumptions
of Theorem 1 for typical a and for e small enough the equation (10) has invariant
sets of the Hausdorf measure 1{2n as large as desired. These sets are filled with
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quasiperiodic trajectories with zero Lyapunov exponents. They form obstacles to
the fast stochastisation of solutions of a typical system of form (10). Our guess is
that the recurrence effect "of FPU type" is caused by such sets.

Our results leave without any answer the natural question: do the infinite.
dimensional invariant tori of the system (10) with e 0 persist under Hamiltonian
perturbations? The answer is affirmative if the following three assumptions are
satisfied:

a) the perturbation H has short range interactions, i.e, for u(t) written as
I:z;(t)<pt, and for some finite N the equation for z; does not depend on with
Ik - ml 2: N (or depends on in an exponentially small with respect to Ik - ml
way);

b) IH(u)1 = O(lIull d ) for some d > 2;

c) the coefficients z; decrease, for example, exponentially when k is growing.

The assumptions a), b) never hold for nonlinear partial differential equations
(but they are fulfilled for some equations from the physics of crystals). For the
exact statements see [FSW], [VB] and [P2], [W2], [AIFS], [ChP]. We remark that
the works [FSW] , [VB] were the first ones where KAM theory was applied to infinite
dimensional Hamiltonian systems.

Without the assumptions a)b) the maximal magnitude of the perturbation
which allows one to prove Kolmogorov's theorem (=to prove preservation most of
halfdimensional tori) exponentially decrease with the dimension of the phasespace
(see e.g. [P2, p.364]). We suppose that the exponential estimate is the best possible
one. In particular, infinitedimensional tori "in general" do not survive under the
system's perturbations.

We end this part with the remark that some results concerning the preservation
of infinitedimensional tori in equation (10) with the sectrum {±i>'j} of a special
type may be obtained via infinitedimensional versions of Siegel's theorem. See
[War], [Z2] and especially [Nik].

3. Applications

In this item we show that Theorem 1 gives a flexible tool to study nonlinear
Hamiltonian PDE's with onedimensional spatial variable. We discuss applications
to nonlinear perturbations of linear equations, to smallamplitude oscillations in
nonlinear equations and to perturbations of the integrable PDE's. We end the item
with some arguing why the theorem can not be applied to multidimensional PDE's.

3.1 Perturbations of linear differential equations

As a rule, the assumption 1) of Theorem 1 is fulfilled if J A is a differential
operator on a segment with some selfadjoint boundary conditions. So the theorem
is applicable to spatially onedimensional quasilinear Hamiltonian partial differential
equations, depending on a vector parameter.

Ezample 1 (see [K1] and Part 2.3). Let us consider nonlinear Schrodinger
equation with a bounded real potential V(z; a), depending on an ndimensional
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parameter a:

u= i( -1.£.". +V(z; a)u + etp'(z, 11.£1
2
; a)u) ,

U=U(t,Z), tER, zE(0,1I"); U(t,0):=U(t,1I"):=Oo
(21)

Here tp is a real function analytic in 11.£1 2 and tp' = 8tp/8 11.£12 • To apply the theorem
one has to set Z equal to the space of square-summable complex-valued functions
on (0,11") (and consider it as a real Hilbert space), to set A.. equal to the differential
operator /8z2+V( Z; a) under the Dirichlet boundary condition, to set J 1.£(z) =
iu(z) and

Ii""H..(u(z)) = - tp(z, lu(z)1 2 ;a) dz 0

2 0

Let us denote by {tpj (Z;a)}, {Aj (a)} complete systems of real eigenfunctions
and eigenvalues ofthe operator A... The invariant n-tori ofthe unperturbed problem
are of the form

..
T(I) = + iaj)tpj(z; a) Iaf + aj2 = 2Ij > 0 Vj} .

j=l

By the well-known asymptotics of the spectrum of the Sturm-Liouville problem
([MaJ, [PTJ), Aj(a) = j2 +0(1) and the assumption 1) of Theorem 1 is fulfilled with
d1 = 2, K, = 3/2. The theorem is applicable to the problem (21); therefore the torus
T(I) persists in the probelm (21) for most of a and e small enough, if the potential
V depends on a in a nondegenerate way. So for nondegenerate families of potentials
{V(o;a)} and for typical parameters a equation (21) has a lot of quasiperiodic in t
solutions, localized in the phase-space Z in a eP-neighborhood of the low-frequency
tori T(I).

Ezample ! (see Part 2.4). We consider nonlinear Schrodinger equation with
real random potential V,,(z) under the Dirichlet boundary conditions:

where v is a random parameter. We denote by QPe = QPe(v) C Z the random sub-
set of the phase space Z = L2 ( -11",11"; C), equal to the union of all time quasiperiodic
solutions with zero Lyapunov exponents (we treat the solutions as curves in Z). It
occurs that if the potential V is z-periodic "with good randomness properties" , then
the set QPe is asymptotically dense in the phase space as e -+ 0: for any complex
function J(z)

dist(3(·),QPe)-----+0 (e -+ 0)

in probability.

To prove this statement we treat (22) as an equation (21) with an infinite-
dimensional parameter a. We 1) apply the results of Example 1 to construct in-
variant tori of dimensions 1,2,... ; 2) prove that the union of these finite-dimensional
invariant tori is asymptotically dense in Z when e -+ o.
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This result explains (and predicts) long-time regular behaviour of "typical" so-
lutions of (22), trapped by linearly-stable regular solutions from QPe • The solutions
in QPe can be eternally approximated with accuracy Oe by the quasiperiodic so-
lutions of linear equation (22)le=0 with the frequency vector w replaced by some
averaged vector We (see Corollary 2.1.1 in Part 2). We think that this result, which
is also true for other hamiltonian PDE's with random coefficients, can be treated as
a kind of averaging theorem for nonlinear PDE's.

Ezample 3 (see Part 2.5). Theorem 1 can be applied to study nonlinear per-
turbations of the quantized harmonic oscillator

ti = i(-1.£,.,. + (z2 + VO(zja»)u + EVH..(u») ,
1.£ = u(t,z) , Z E R , u(t,') E L2(R) ,

(23)

where the function Vo vanishes at Z = ±oo. The operator A.. = -ffJ /8z2 + z2+
Vo has a discrete spectrum Pi(a)}, which obeys Bohr's quantization law: >'i '"
O(j +1/2). Moreover, I>'i - OU +1/2)1 Od-1/ 2 • So the spectral asymptotic
assumption holds with d1 = 1 and Theorem 1 can be applied to (23), provided that
the gradiental map VH..(u) is of a negative order. In particular, if

(1.£ *eis the convolution with a smooth real-valued function e, vanishing at infinity).

We can also consider perturbed unharmonic oscillator

where IS > O. Now

so the assumption 2) of Theorem 1 holds in a slightly generalized form with d1 = K, =
4/3 (below in Part 3 the theorem is stated and proven with the spectral assumption
exactly in this form). The first assumption of Theorem 1 holds with du = 0, dJ 0,
d1 = 4/3. So typically equation (24) has many time-quasiperiodic solutions, if e is
small enough.

Ezample./ (see [K2] and Part 2.6). Let us consider the equation of oscillations
of a string with fixed ends in nonlinear-elastic media depending on n-dimensional
parameter:

tV = - V(Zj a»)w - EY'tu(Z,Wj a) ,
w=w(t,z), tERj w(t,O)::w(t,1f')::O.

(25)

After some reduction (see Part 2.6) Theorem 1 is applicable to this problem with
the choice d1 = I, K, = 3/2, dH = -1. So in a nondegenerate case quasiperiodic in
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t solutions of the unperturbed problem (25) with e = 0 persist in the problem (25)
for most of a and for small enough.

Concrete examples of nondegenerate potentials are given in Part 2.6 (in partic
ular if n = 1, then one can take V(Zj a) = a).

I! n =1, then the theorem deals with timeperiodic solutions

w(t,Z) = Il;'j(zja) sin (V>.-j(aHt + q»
of linear string equation (25)le=0, depending on a onedimensional parameter a (as
above, {l;'j(Zj an and Pj(an are eigenfunctions and eigenvalues of the operator
-lfJ/8z2 + V(zja». These solutions persist in the perturbed equation (25) for
most of a, if Aj(a) ;j; 0 and

where m is an arbitrary integer and the numbers i. N, M are pairwise different.
This statement is an infinitedimensional analog of the Lyapunov theorem (see item
1.1 above) with an additional secondorder nonresonance condition. Recently Craig
and Wayne [CW] proved that the extra condition may be omitted provided that the
functions V and I;' are analytic in e ,

Timeperiodic solutions of nonlinear string equation under the Dirichlet bound
ary conditions have been studied by many authors (see the survey [BreI]). Un
der different restrictions on the nonlinear term of the equation it was proven that
the equation has a countable family of timeperiodic solutions. Our tools enable
us to prove that for typical potentials the equation has timeperiodic solutions,
parametrized by the points of some one-dimensional sets (see (18». In [BoK] simi
lar result is proven for parameterindependent equation (25) with V = 1, provided
that I;' = Kip4- +0(11;'15 ) , K, t- 0 (the proof is based on an application of Theorem 1
to perturbations of the SineGordon and SinhGordon equations).

3.2 Perturbations of nonlinear systems

A) Perturbation. of Birkhoff-integrable ''gltem. (see [K5], Example 1).

We call a Hamiltonian system Birkhoff integrable if it may be analytically re
duced to an infinite sequence of Hamiltonian equations of the form

zj = 8Ho/8z;, z; = -8Ho/8zj, i = 1,2, ...

with
1 ( +2 2)Ho = HO(Pl,P2, ... ), Pj  z· +z72 1 1

[i.e., it may be analytically reduced to the Birkhoff normal form, see [Mo], [SM]).
The ntori
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are invariant for the system. It is convenient to pass to the variables (q,p,y) as in
(13) with p = (pi, ... ,Pn), Y = (yt, Yl' yt,·· .), yt = Z;+j (j = 1,2, ...). In these
variables the equations have the form (14) with

1 s
1io(q, p, y) =h(p) + 2(A(p)y, y) +O(lyl ),

where

and

So the e-perturbed hamiltonian in the new variables is equal to

1 s
1ic = 1io+ eHl = h(p) + 2 (A(p)y,y) +O(lIyll )+ eHl • (26)

Let us fix for a moment some a E R+. and rewrite 1ic as follows:

where w(a) = Vh(a). The term in the square brackets does not affect the dynamics
and may be neglected. Let us suppose that the system possesses non degenerate
amplitude-frequenc, modulation:

Hessh(a) det {8wj(a)/8a,,}:f:. O. (27)

Then one can treat the vector a as a parameter of the problem and apply to the per-
turbed problem Theorem 1, taking into account Refinement. So if spectral asymp-
toties and nondegeneracy assumptions are fulfilled, then most of invariant tori T(a)
survive under perturbations.

The trick we have just discussed is well suited to study perturbations of finite-
dimensional integrable systems but not perturbations of integrable partial differen-
tial equations of Hamiltonian form. The reason is that in the last case the transition
to the Birkhoff coordinates (or to the action-angle ones) is not regular.li ) To handle
the integrable PDE's one needs more sophisticated approach; see item C) below.

B) Use of the partial Birkhoff normal form

One can treat the unperturbed linear Hamiltonian system (10) as a Birkhoff
integrable system with the quadratic hamiltonian 1io = h(p) + t(Ay,y), where

t(Ay,y) = +z;') and h(p) A1Pl+.. +AnPn,W(P) = (Ab'" ,An)'

s) At least, the smoothness or analyticity of the action-angle variables is not
proven yet. See in [MeT] continuou& action-angle variables for the KdV equation;
see [Kap] for the fact that the constructed in [MeT] foliation of the phase-space
to invariant tori - not the action-angle variables themselves! - is analytic in
L2-norm.
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Now the condition (27) is broken and one can not use an amplitude-frequency mod-
ulation to avoid outer parameters a. Nevertheless sometimes one can extract the
modulation from the perturbation. This trick was successfully used in a number of
works, starting (as far as we know) with Arnold's paper [A3] devoted to Hamiltonian
systems with proper degeneration (see also [AKN])j Poschel [PI] used the trick in
his investigations of lower-dimensional tori, Wayne [WI] used similar approach to
prove the existence of quasiperiodic in time solutions of nonlinear string equation
with a random potential. Now we turn to its discussion.

For the sake of symplicity we restrict ourselves to the perturbations of the form
H = H S +Hf, with homogenous of order j functions Hi, j = 3,4. Let us pass to
the variables (13). Then the perturbed hamiltonian is 1{.. =1{.0+ eH1 with

Here H1 is a vector in Y and H 2 is a selfadjoint operator. So

1{.. = h(p) + +e[HO(q,p)+ (H I(q,p),y} + +O(IIYlls )] .

It is known since Birkhoff that with the help of a formally-analytic symplectic change
of variables 1{.. may be put into a partial normal form as follows:

Here h1(p) = h(p) + eHO(p) (the bar means the averaging over q E T"] and
Al = A + eA4(p) with some operator A4(p) constructed in terms of the operator
8 2(p). The function (28) is of the same form as (26) and in general the assumption
(27) is fulfilled for the function h I (p).

The natural parameter IN =VhI (p) varies now in a domain of a small diameter
6A,6A '" e (the perturbation is much smaller - of order e2 ) . So Theorem 1 can not
be directly applied to the equation (28). To handle this class of problems we state
in Part 3 of the book Theorem 3.1.2, devoted to the equation (10) written in the
variables (13), with the set 2t equal to the ball of a small radius 6A • The theorem
states that the assertions of Theorem 1 remain true if

= O(lp - 11 2 + lIyllS +IIYII2 Ip - II) ,

where p > 0 and 1 6A Oe. (For the exact statement of the result see Part 3.1.)

The application of this result with 6.. = e, P = 1 to the equation with the
hamiltonian (28) proves persistence most of the invariant n-tori Tn(p) of the initial

f) One can achieve this normal form by formal applying to H. the transformation
So from Part 3.2 (the "KAM-step" of our proof), taking for granted that all the
involved series converge.
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linear system, provided that the transformation to the partial normal form converges
and the nondegeneracy assumption

tOl5ether the nonresonance (the 3) of Theorem 1, where
A= A, (Al"" ,An)(p) Vhl (p) and {,Xn+l (p), An+2(p), .. .} is the spectrum of the
operator Al(p)). Below we call these assumptions nonlinear, because they reflect
nonlinear nature of the equation with the hamiltonian (28) (the frequencies {>'j} of
oscillations depend on their amplitude-vector pl.

The exact formulae, which can be constructed as in [PI], or, due to the last
footnote, can be extracted from the proof of Theorem 1 (see below Part 3.2 with
m = 0 and Part 3.8), show that the normal-form transformation is defined as a
series with some regular numerators and with denominators of the form D( =

+ ... + SNAN. Here N is an arbitrary natural number n +1 and

So if
ID(s)1 c:' (30)

for all s as above, then the normal-form transformation converges.

The condition (30) is not very restrictive because it holds for typical sequences
{Aj} satisfying assumption 2) of Theorem 1. Nowwe check this statement for dl > 1.
To do it let us take some N n + 1. Then

ID(s)1 IAn+1Sn+1 + ... + ANSNI IAISl+ ... + Ansnl

IAN - AN-11- 3max{IAjl!I ::::; j::::; n} CING1-l - C2 •

So (30) holds with 0 =1 if N is greater than some No. Therefore the inequality (30)
holds if D(s) ::f: 0 for the finite set of resonance relations consisting of all admissible
relations with N ::::; No (one can choose 0-1 equal tomin{l,min{ID(s)1 IN::::;
No}} ).

Thus, one can guarantee the convergence of the normal-form transformation for
a parameter-dependent system for most values of the parameter. Due to simplicity
of the involved resonance relations, often it is sufficient to have a one-dimensional
parameter to obtain the convergence for any fixed n 1.

The scheme we have just explained is applicable to study parameter-depending
perturbed equation (10), if we

1) take away a set 2{c of parameters a E 2{, violating the estimate (30) for some
as in (29) (this set is small, if C is large enough) and transform the equation to

the normal form (28);

2) check the nonlinear nondegeneracy and nonresonance assumptions for O:j(p)}
and apply Theorem 3.1.2, treating w = Vhl(p) as the parameter.

The advantage of this approach to prove persistence of invariant n-tori of the
linear system is that the set 2{c of "bad" parameters a is now an 1- and
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e-independent set, which is relatively under the control. The disadvantage is the
necessity to check the nonlinear nondegeneracy and the nonresonance assumptions
for the "averaged" spectrum {5.j (p)} , in addition to the ones for the initial spectrum
{>'j(a)} which we need to make the first step.

This approach is applicable to study nonlinear Schrodinger and nonlinear string
equations we discussed in Examples I, 4 above. It is not difficult to check that
the nonlinear nondegeneracy and nonresonance assumptions hold e.g., if in (25)
the nonlinear term -f:lpV1 is equal to -f:W3• The existence of time-quasiperiodic
solutions of the equation

tV =W zz - V(z)w - ew3
, w(t,O) == w(t,'II") == 0, (31)

with the potential V(z) lying outside a small set of "bad" potentials was obtained
in a similar way by C.E. Wayne. In his paper [WI] the set of all potentials is
given some Gaussian measure and the set of "bad" potentials is constructed as its
small-measure subset.

In fact, the infinite-dimensional parameter V(z), used in [WII, is much exces-
sive: the scheme given above is applicable to (31) with V( z) == m E R+. It allows
to prove existence of time-quasiperiodic solutions for most "masses" m > O.

Remark. If the quadratic hamiltonian 1-1.0 is perturbed by higher-order terms
starting from fourth order, then 1-I.c (z ) = 1-I.o(z) + H,,(z) + H5(z) + .... To study
small-amplitude solutions of the corresponding Hamiltonian equation one can rescale
z = pu, p « 1, obtain for u the equation with the hamiltonian 'Hc(u) = 1-I.o(u)+
p2H,,(u)+ pSH5(u) + ... and proceed exactly as above (with £ = p2).

If the perturbation includes cubic terms, then the rescaled hamiltonian 'Hc(u)
contains the term pHs(u) which does not contribute to the function hl(p). Now the
perturbation in (28) is larger than Hess hI (the perturbation is of order p and the
Hessian - p2)j so we can not use w = Vh l as a parameter to apply the theorem.

C) On the integrable equationl of mathematical phYlicl

One of the main achievements of mathematical physics during the last decades
was the discovery of theta-integrable nonlinear partial differential equations (see e.g.
[DEGN], [NMPZ]). Such equations are quasilinear Hamiltonian equations of the form
(9). They possess invariant symplectic 2n-dimensional manifolds 1'2", such that the
restriction of the system (9) on 1'2", is integrable. So 1'2", is symplectomorphic to
T; x Pp , PeR"', and in coordinates (q,p) the restriction of the system onto 1'2",
has the form

q= Vh(p) , p= 0 .

Therefore 1'2" is foliated into invariant n-tori T"(p) = {(q,p)lp = const} filled
with quasiperiodic solutions uo(t) = (q + tVh(p),p). The question is if the tori
T"'(p) survive under Hamiltonian perturbations of the equation. To formulate the
corresponding result we have to consider variational equations about the solutions
uo(t):
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and to suppose that these equations are reducible to constant coefficient linear equa
tions by means of a quasiperiodic substitutions v = B(t,p)V (B is linear operator
in Z quasiperiodically depending on t). It is proved (see [K3], [K5], [K8]) that under
the reducibility assumption the quasilinear equation (9) near the manifold T2n may
be written in the form (14) with

1 3n = h(p)+ "2(A(p)y,y)+O(IIyll ).

A perturbed equation under this reduction takes exactly the form (26). So as in
item A) one can prove that in a nondegenerate situation most of the tori Tn(p)
persist under perturbations.

The integrable nonlinear PDE's, linearized about their timequasiperiodic solu
tions, are reducible to constantcoefficient equations. So Theorem 1 is applicable to
study their perturbations. For an exact realization of this scheme for a perturbed
Kortewegde Vries and SineGordon equations see [K5] and [BiK], [BoKJ.

See [K7] for a more detailed discussion of this group of applications of Theo
rem 1.

D) Some remark... on multidimensional problems

The most restrictive for applications among the assumptions of Theorem 1 is
the assumption 2) (spectral asymptotics). As we have seen, this assumption holds
for the differential equations with zvariable in a finite segment (or in the whole real
line if the potential of the equation grows at infinity fast enough). The assumption
2) may be somewhat weakened with the same proof being applicable (see Remark
7 in Part 1.2). However, to carry out the proof the "separation condition"

inf IAJo(a) Ak(a)J s> 0
i#

must be fulfilled (possibly, under some additional restriction one could replace (*)
by the somewhat weaker assumption

(**)

with some "not too large"positive m).

We do not know any example where these conditions hold for a differential
equation with multidimensional e, Conversely, (*) and (**) do not hold if the
quantization arguments can be applied to construct quasimodes of the equation
([Laz], [GW]). In particular, (**) does not hold for the spectrum of the Dirichlet
problem for the Laplace operator in a bounded convex twodimensional domain with
an analytic boundary [Laz].

Thus the nonlinear hamiltonian PDE's with evariable in a segment form the
distinguished class of equations with regular behavior of typical smallamplitude
solutions.
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4. Remarks on averaging theorems

Above we have proposed as an explanation for the recurrence effect of the
FPU-type in partial differential equations of Hamiltonian form the theorem on per-
sistence most of quasiperiodic solutions under Hamiltonian perturbations. It is well
understood however that the long-time regular behavior of solutions may be ex-
plained by means of averaging theorems as well. In a finite-dimensional situation
Nekhoro,hev', theorem (see [NI, [BGGI, [Lo], [P4]) suites this purpose very well. For
infinite-dimensional systems with discrete spectrum versions of this result are known
only for systems with short range interactions ([W3I, [BFG]). We are rather sceptical
that there exists a version of Nekhoroshev's theorem applicable to nearly-integrable
nonlinear partial differential equation.

Fir,t-order averaging theorem, of Krylov-Bogolyubov type hold for a wide class
of finite-dimensional systems. In the infinite-dimensional situation similar results are
proven for lower-frequency initial data only (but for multidimensional in z equations
also, see [Kri], [K3], [K4]). It is an open question if a first order averaging theorem
for solutions of nearly integrable PDE's can be proven without this restriction.

o. Remarks on nearly integrable sympleetomorphisms

Instead of differential equations (9) one can consider a "discrete-time equa-
tion" in the same infinite-dimensional phase-space (Z,a = -(J-1dz,dz)), i.e., a
symplectic map

S: Z---+Z, S*a = a . (32)

The same phenomenon of pathologically regular behavior trajectories of nearly in-
tegrable sustem (32) (=iterations of the map S) can be observed; and the same
question whether this phenomenon can be explained by existence many of finite-
dimensional invariant tori of the map S appears.

A discrete-time theory parallel to the one for continuous-time systems we have
discussed, can be developed. Fortunately, this work should not be done anew be-
cause of the following

Interpolation theorem. In the extended phase-space

one can find a nearly integrable analytic Hamiltonian vector field with a hamiltonian
H(z,z,y) such that its isoenergetic Poincare map with respect to the manifold
{y = O} n {H = const} is conjugated with S. In particular, if S is closed to the
linear symplectic map exp JA, then H is close to i(Az,z} + 1I"(lz12 + IYI2).

A possible reformulation of the result is that the nearl, integrable anal,tic
"mplectic map S i, conjugated with time-one ,hilt along trajectorie, of anal,tic
l-periodic time-dependent Hamiltonian vector-field, close to an autonomou, inte-
grable one.

So S inherits invariant finite-dimensional tori of the interpolating nearly inte-
grable vector-field.
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As far as we see, the constructive proof of a finite-dimensional version of this
result, given in [K9] (see also [KPJ), is also applicable in the infinite-dimensional
setting. We did not include into [K9] an infinite-dimensional interpolation theorem
mostly because we are not aware of any concrete infinite-dimensional symplecto-
morphism S of physical interest.
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6. Notations

The list of notations we use is given at the end of the book. As usual, we refer
to formula (2.3) form Part 1 as (1.2.3), ifwe are outside Part 1; we refer to Chapter
3.2 of Part 3 as to §2, if we are inside Part 3.
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