Applied Mathematical Sciences

Volume 82

Editors: F. John J. E. Marsden L. Sirovich

Advisors: M. Ghil J. K. Hale J. Keller K. Kirchgässner B. Matkowsky J. T. Stuart A. Weinstein

Applied Mathematical Sciences

- 1. John: Partial Differential Equations, 4th ed.
- 3. Hale: Theory of Functional Differential Equations, 2nd ed.
- 5. von Mises/Friedrichs: Fluid Dynamics.
- 7. Pipkin: Lectures on Viscoelasticity Theory.
- 14. Yoshizawa: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions.
- 15. Braun: Differential Equations and Their Applications, 3rd ed.
- 17. Collatz/Wetterling: Optimization Problems.
- 18. Grenander: Pattern Synthesis: Lectures in Pattern Theory, Vol I.
- 21. Courant/Friedrichs: Supersonic Flow and Shock Waves.
- 24. Grenander: Pattern Analysis: Lectures in Pattern Theory, Vol. II.
- 25. Davies: Integral Transforms and Their Applications, 2nd ed.
- 26. Kushner/Clark: Stochastic Approximation Methods for Constrained and Unconstrained Systems
- 27. de Boor: A Practical Guide to Splines.
- 28. Keilson: Markov Chain Models Rarity and Exponentiality.
- 29. de Veubeke: A Course in Elasticity.
- 30. Sniatycki: Geometric Quantization and Quantum Mechanics.
- 31. Reid: Sturmian Theory for Ordinary Differential Equations.
- 32. Meis/Markowitz: Numerical Solutions of Partial Differential Equations.
- 33. Grenander: Regular Structures: Lectures in Pattern Theory, Vol. III.
- 34. Kevorkian/Cole: Perturbation Methods in Applied Mathematics.
- 35. Carr: Applications of Centre Manifold Theory.
- 36. Bengtsson/Ghil/Källén: Dynamic Meteorology: Data Assimilation Methods.
- 37. Saperstone: Semidynamical Systems in Infinite Dimensional Spaces.
- 39. Piccini/Stampacchia/Vidossich: Ordinary Differential Equations in Rⁿ.
- 40. Naylor/Sell: Linear Operator Theory in Engineering and Science
- 42. Guckenheimer/Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields.
- 43. Ockendon/Tayler: Inviscid Fluid Flows.
- 44. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.
- 45. Glashoff/Gustafson: Linear Optimization and Approximation: An Introduction to the Theoretical Analysis and Numerical Treatment of Semi-Infinite Programs.
- 46. Wilcox: Scattering Theory for Diffraction Gratings.
- 47. Hale et al.: An Introduction to Infinite Dimensional Dynamical Systems Geometric Theory.
- 48. Murray: Asymptotic Analysis.
- 49. Ladyzhenskaya: The Boundary-Value Problems of Mathematical Physics.
- 50. Wilcox: Sound Propagation in Stratified Fluids.
- 51. Golubitsky/Schaeffer: Singularities and Groups in Bifurcation Theory, Vol. I.
- 52. Chipot: Variational Inequalities and Flow in Porous Media.
- 53. Majda: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables.

Rainer Kress

Linear Integral Equations

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong

Rainer Kress Institut für Numerische und Angewandte Mathematik Universität Göttingen Lotzestraße 16-18 D-3400 Göttingen, Fed. Rep. of Germany

Editors

F.John Courant Institute of Mathematical Sciences New York University New York, NY 10012 USA

J.E. Marsden Department of **Mathematics** University of California Brown University Berkeley, CA 94720 USA

L. Sirovich Division of **Applied Mathematics** Providence, RI 02912 USA

Mathematics Subject Classification (1980): 45A05, 45B05, 45E05, 45L05, 45L10, 47B05, 65J10, 65R20, 31B20, 73D40

ISBN-13: 978-3-642-97148-8 e-SBN-13: 978-3-642-97146-4 DOI:10.1007/978-3-642-97146-4

Library of Congress Cataloging-in-Publication Data Kress, Rainer, 1941-Linear integral equations/Rainer Kress. p. cm. -(Applied mathematical sciences: v. 82) Bibliography: p. Includes index. ISBN-13: 978-3-642-97148-8 1. Integral equations. I. Title. II. Series: Applied mathematical sciences (Springer-Verlag New York Inc.); v. 82. QA1.A647 vol. 82 [QA431] 510 s-dc20 [515'.45] 89-11289 CIP

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1989

Softcover reprint of the hardcover 1st edition 1989 Media conversion: EDV-Beratung Mattes, Heidelberg 2141/3140-543210 Printed on acid-free paper

To the Memory of My Parents

Preface

I fell in love with integral equations about twenty years ago when I was working on my thesis, and I am still attracted by their mathematical beauty. This book will try to stimulate the reader to share this love with me.

Having taught integral equations a number of times I felt a lack of a text which adequately combines theory, applications and numerical methods. Therefore, in this book I intend to cover each of these fields with the same weight. The first part provides the basic Riesz-Fredholm theory for equations of the second kind with compact opertors in dual systems including all functional analytic concepts necessary for developing this theory. The second part then illustrates the classical applications of integral equation methods to boundary value problems for the Laplace and the heat equation as one of the main historical sources for the development of integral equations, and also introduces Cauchy type singular integral equations. The third part is devoted to describing the fundamental ideas for the numerical solution of integral equations. Finally, in a fourth part, ill-posed integral equations of the first kind and their regularization are studied in a Hilbert space setting.

In order to make the book accessible not only to mathematicans but also to physicists and engineers I have planned it as self-contained as possible by requiring only a solid foundation in differential and integral calculus and, for parts of the book, in complex function theory. Some background in functional analysis will be helpful, but the basic concepts of the theory of normed spaces will be briefly reviewed, and all functional analytic tools which are relevant in the study of integral equations will be developed in the book. Of course, I expect the reader to be willing to accept the functional analytic language for describing the theory and the numerical solution of integral equations. I hope that I succeeded in finding the adequate compromise between presenting integral equations in the proper modern framework and the danger of being too abstract.

An introduction to integral equations cannot present a complete picture of all classical aspects of the theory and of all recent developments. In this sense, this book intends to tell the reader what I think appropriate to teach students in a two-semester course on integral equations. I am willing to admit that the choice of a few of the topics might be biased by my own preferences and that some important subjects are omitted.

I am indepted to Dipl.-Math. Peter Hähner for carefully reading the book, for checking the solutions to the problems and for a number of suggestions for valuable improvements. Thanks also go to Frau Petra Trapp who spent some time assisting me in the preparation of the IAT_EX version of the text. And a particular note of thanks is given to my friend David Colton for reading over the book and helping me with the English language. Part of the book was written while I was on sabbatical leave at the Department of Mathematics at the University of Delaware. I gratefully acknowledge the hospitality.

Göttingen, April 1989

Rainer Kress

VIII

Contents

1. Normed Spaces

	1.1	Convergence and Continuity	2
	1.2	Open and Closed Sets	4
	1.3	Completeness	5
	1.4	Compactness	5
	1.5	Scalar Products	8
	1.6	Best Approximation	10
2.	Bou	nded and Compact Operators	
	2.1	Bounded Operators	13
		Integral Operators	14
	2.3	Neumann Series	16
	2.4	Compact Operators	17
3.	The	Riesz Theory	
	3.1	Riesz Theory for Compact Operators	25
		Spectral Theory for Compact Operators	31
		Volterra Integral Equations	33
4.	Dua	Systems and Fredholm Theory	
	4.1	Dual Systems Via Bilinear Forms	36
	4.2	Dual Systems Via Sesquilinear Forms	37
	4.3	Positive Dual Systems	39
	4.4	The Fredholm Alternative	41
	4.5	Boundary Value Problems	46
5.	Regu	Ilarization in Dual Systems	
	5.1	Regularizers	50
		Normal Solvability	51
	5.3	Index	56
6.	Pote	ntial Theory	
	6.1	Harmonic Functions	58
	6.2	Boundary Value Problems: Uniqueness	62
	6.3	Surface Potentials	67
		Boundary Value Problems: Existence	71
	6.5	Supplements	74

7.	Singular Integral Equations	
	 7.1 Hölder Continuity 7.2 The Cauchy Integral Operator 7.3 The Riemann Problem 7.4 Singular Integral Equations with Cauchy Kernel 	82 84 91 94
	7.5 Cauchy Integral and Logarithmic Potential7.6 Supplements	$\begin{array}{c} 99 \\ 105 \end{array}$
8.	Sobolev Spaces	
	8.1 Fourier Expansion 8.2 The Sobolev Space $H^p[0, 2\pi]$ 8.3 The Sobolev Space $H^p[\Gamma]$ 8.4 Weak Solutions to Boundary Value Problems	108 109 117 124
9.	The Heat Equation	
	 9.1 Initial Boundary Value Problem: Uniqueness 9.2 Heat Potentials 9.3 Initial Boundary Value Problem: Existence 	$132 \\ 134 \\ 139$
10.	Operator Approximations	
	 10.1 Approximations Based on Norm Convergence	142 144 146 147 149
11.	Degenerate Kernel Approximation	
	 11.1 Finite Dimensional Operators 11.2 Degenerate Kernels Via Interpolation 11.3 Degenerate Kernels Via Expansions 	$154 \\ 156 \\ 164$
12.	Quadrature Methods	
	 12.1 Numerical Integration 12.2 Nyström's Method 12.3 Nyström's Method for Weakly Singular Kernels 	$168 \\ 171 \\ 175$
13.	Projection Methods	
	13.1 The Projection Method13.2 The Collocation Method13.3 The Galerkin Method	184 189 199
14.	Iterative Solution and Stability	
	14.1 The Method of Residual Correction14.2 Multi-Grid Methods14.3 Stability of Linear Systems	$206 \\ 210 \\ 215$

15.	Equations of the First Kind			
	15.1 Ill-Posed Problems	221		
	15.2 Regularization of Ill-Posed Problems	224		
	15.3 Compact Self Adjoint Operators	226		
	15.4 Singular Value Decomposition	232		
	15.5 Regularization Schemes	236		
16.	Tikhonov Regularization			
	16.1 The Tikhonov Functional	243		
	16.2 Weak Convergence	244		
	16.3 Quasi-Solutions	245		
	16.4 Minimum Norm Solutions	250		
	16.5 Classical Tikhonov Regularization	253		
17.	Regularization by Discretization			
	17.1 Projection Methods for Ill-Posed Equations	259		
	17.2 The Moment Method	263		
	17.3 Hilbert Spaces with Reproducing Kernel	265		
	17.4 Moment Collocation	267		
18.	Inverse Scattering Theory			
	18.1 Ill-Posed Integral Equations in Potential Theory	270		
	18.2 An Inverse Acoustic Scattering Problem	277		
	18.3 Numerical Methods in Inverse Scattering	279		
Bibliography				
Index				
Index 2				