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Preface

Ich schaffe, was ihr wollt, und schaffe mehr;
Zwar ist es leicht, doch ist das Leichte schwer.
Es liegt schon da, doch um es zu erlangen,
Das ist die Kunst! Wer weiss es anzufangen?
Goethe, Faust II

The present text centers around a fundamental task of measure and
integration theory, which has not found an adequate solution so far. It is
the task to produce, with unified and universal means, true contents and
above all measures from more primitive data, in order to extend elementary
contents and to represent so-called elementary integrals. The traditional
main tools are the Carathéodory extension theorem and the Daniell-Stone
representation theorem. These theorems are much too restrictive in order
to fulfil the needs.

Around 1970 a new development started in the work of Topsøe and
others. It was based on the notion of regularity, which for a set function
means to determine its values from a particular set system by approximation
from above or below. In traditional measure theory this notion is linked to
topology.

The present text wants to be a systematic treatment of the context in
the new spirit. It is based to some extent on personal work of the author.
The main results are equivalence theorems for the existence and uniqueness
of extensions and representations, which are not more complicated than
the traditional ones but much more powerful. With these results the text
clarifies and unifies the entire context. The main instruments are certain
new envelope formations which resemble the traditional Carathéodory outer
measure.

The systematic theory has numerous applications. The most important
application is the full extension of the classical Riesz representation theorem
in terms of Radon measures, from locally compact to arbitrary Hausdorff
topological spaces. As another application we note an extension and at
the same time simplification of the Choquet capacitability theorem, which
shows that the new formations can be useful for so-called non-additive set
functions as well. Some of the applications are treated without pronounced
technical sophistication. We rather want to demonstrate that certain basic
ideas and results are natural outflows from the new theory.



VIII PREFACE

The central parts of the text are chapters II and V. Their main substance
as well as their history and motivation are outlined in the introduction below.
It is an elaboration of a lecture which the author delivered at several places,
in the present form for the first time at the symposium in honour of Adriaan
C.Zaanen in Leiden in September 1993.

Chapters I and IV are filled with preparations. We need certain standard
material in unconventional versions which have to be developed. We also
need several new notations.

The application to the Riesz representation theorem is in chapter V
section 16. The other applications are in chapters III, VI and VII. We
emphasize that chapter VII develops an abstract product formation which
comprises the Radon product measure of Radon measures. The final chapter
VIII is an appendix which is independent of the central chapters II and V.
It wants to demonstrate that the unconventional notions of content and
measure introduced in chapter I can be useful in other areas of measure
theory as well.

All this says that the central themes of the present text are the funda-
mentals of measure and integration theory. The author hopes that its readers
will find it less technical than it looks at first sight. He thinks that the text
can be read with appreciation by anyone who has struggled through the
traditional abstract and topological theories. However, it is different from a
textbook in the usual sense. The presentation is ab ovo, though more like
in a book of research. The author hopes that the text will be used in future
courses. An ideal prerequisite would be the recent small book of Stroock
[1994], because on the one hand it provides the concrete material which
should precede this one, and on the other hand it does not take the reader
onto the traditional paths of abstract measure and integration theory which
the present work wants to restructure.

The author wants to express his warmest thanks to Gustave Choquet,
Jean-Paul Pier, Reinhold Remmert, Klaus D.Schmidt, Maurice Sion, and
Flemming Topsøe for insightful comments, encouragement, and good advice.
Likewise he thanks Robert Berger and Gerd Wittstock for constant help with
the resistful machine into which he typed the final version of the text. He
extends his thanks to the former and present directors of the Mathematical
Research Institute Oberwolfach, Martin Barner and Matthias Kreck, for
several periods of quiet work in the unique atmosphere of the Institute.

August 1996 Heinz König
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Introduction

The textbooks on measure and integration theory can often be sub-
divided into two parts of almost equal size: One part describes what can
be done when one is in possession of measures of one or another type. The
other part describes how to obtain these measures from more primitive data,
which as a rule are elementary contents or elementary integrals. The for-
mer part is based on some famous theories. But the latter part is in less
favourable state, because its main theorems do not fit the actual needs in
certain central points. We shall explain this statement, and then describe
how the situation can be repaired. To do this we sketch the main ideas and
results of our chapters II and V, which form the central parts of the present
text.

Construction of Measures from Elementary Contents

The classical theorem on the existence of measure extensions reads as follows.
Our technical terms are either familiar or obvious.

Theorem. Let ϕ : S→ [0,∞] be a content on a ring S of subsets in a
nonvoid set X. Then ϕ can be extended to a measure α : A → [0,∞] on a
σ algebra A iff ϕ is upward σ continuous.

There are few situations where this theorem can be applied without
complications. The reason is that the natural set systems which carry el-
ementary contents are almost never rings, but at most lattices. This is in
particular true for the basic set systems in topological spaces. Even to con-
struct the Lebesgue measure via rings forces us to work with the unnatural
half-open intervals, which might be adequate in order to produce sophisti-
cated counterexamples, but not for the foundations of one of the most basic
theories in analysis.

Like the theorem itself, also its usual proof due to Carathéodory [1914]
does not fit the actual needs as it stands. Let us recall that it is based on two
formations. On the one hand one defines for a set function ϕ : S → [0,∞]
on a set system S with ∅ ∈ S and ϕ(∅) = 0 the so-called outer measure
ϕ◦ : P(X)→ [0,∞] to be

ϕ◦(A) = inf
{ ∞∑

l=1

ϕ(Sl) : (Sl)l in S with A ⊂
∞⋃
l=1

Sl

}
.
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On the other hand one defines for a set function φ : P(X) → [0,∞] with
φ(∅) = 0 the so-called Carathéodory class

C(φ) := {A ⊂ X : φ(S) = φ(S ∩A) + φ(S ∩A′) ∀S ⊂ X} ⊂ P(X).

Then for the nontrivial direction of the theorem one verifies that ϕ◦|C(ϕ◦)
is a measure on a σ algebra and an extension of ϕ.

We shall see that the formation C(·) is so felicitous that it will survive
the upheaval to come, at least within the present step of abstraction. In
contrast, we shall see that the specific form of the outer measure must be
blamed for the deficiencies around the extension theorem which will now be
described in more detail.

1) The outer measure is a beautiful tool in the frame of rings, but it
ceases to work beyond this frame. It does not even allow to extend the
theorem to the particular lattices S which fulfil B \ A ∈ Sσ for all A ⊂ B
in S, where the assertion will be seen to persist. The class of these lattices
is much more realistic than the class of rings. For example, it includes the
lattices of the closed subsets and of the compact subsets of a metric space.

2) The outer measure is an outer regular formation: The definition shows
that

ϕ◦(A) = inf{ϕ◦(S) : S ∈ S
σ with S ⊃ A} for all A ⊂ X,

that is ϕ◦ is outer regular Sσ. Now present-day analysis requires inner
regular formations perhaps even more than outer regular ones. However,
the definition of the outer measure is such that no inner regular counterpart
is visible.

The need for inner regular formations comes from the predominant role
of compactness in topological measure theory. It became clear that the most
important class of measures on an arbitrary Hausdorff topological space X
are the Radon measures, defined to be the Borel measures α : Bor(X)→
[0,∞] which are finite on the system Comp(X) of the compact subsets of X
and inner regular Comp(X). It is then an immediate problem to characterize
those set functions ϕ : Comp(X) → [0,∞[ which can be extended to (of
course unique) Radon measures, the so-called Radon premeasures. We
see that the classical extension theorem does not help in this problem for at
least two reasons.

3) The outer measure is a formation of sequential type. But present-day
analysis also requires non-sequential formations, once more for topological
reasons. However, the definition of the outer measure is such that no non-
sequential counterpart is visible.

4) It is a sad fact that the methods employed for contents and measures
have not much in common with those for so-called non-additive set functions
like capacities. Now the outer measure has a certain built-in additive charac-
ter. One can be suspicious that this fact is responsible for the imperfections
which we speak about.
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There were of course attempts to improve the situation. The main re-
sults of Pettis [1951] were complicated and hard to use because, as it seems
now, regularity had not yet attained its true position. Srinivasan [1955] was
restricted to the extension from rings, but was able to develop a symmet-
ric outer/inner extension procedure and anticipated the later expressions
in this frame. Around 1970 deliberate efforts started in order to develop
improved extension methods in terms of lattices, outer and inner regular-
ity, and sequential and non-sequential procedures. A decisive prelude was
the characterization of the Radon premeasures due to Kisyński [1968]. The
main achievements came from Topsøe [1970ab], albeit restricted to the inner
situation, from Kelley-Srinivasan [1971] and Kelley-Nayak-Srinivasan [1973],
Ridder [1971][1973], and later from Sapounakis-Sion [1983][1987] and oth-
ers. But the new methods were less simple and coherent than the traditional
ones and therefore did not find access to the textbooks. The reason was that
there were no universal substitutes for the outer measure. It is a surprise
that one did not resume the expressions of Srinivasan [1955] (as a result the
author himself did not look at that paper earlier than while he wrote the
present text). Also there was no adequate symmetric treatment of the outer
and inner cases. The basic symmetric formations were the crude outer and
inner envelopes ϕ�, ϕ� : P(X) → [0,∞], defined for an isotone set function
ϕ : S→ [0,∞] with ∅ ∈ S and ϕ(∅) = 0 to be

ϕ�(A) = inf{ϕ(S) : S ∈ S with S ⊃ A},
ϕ�(A) = sup{ϕ(S) : S ∈ S with S ⊂ A},

which are adequate for contents but not for measures (otherwise the outer
measure would not have come into existence).

At this point we postpone further historical comments and turn to the
vita of the present author on which the plan for this text is based. In
an analysis course [1969/70] I wanted to construct the Lebesgue measure
without use of half-open intervals. I observed that the old proof extends
without further efforts from rings to the particular lattices described in 1),
provided that instead of the outer measure one uses the formation ϕσ :
P(X)→ [0,∞], defined for an isotone set function ϕ : S→ [0,∞] to be

ϕσ(A) = inf
{

lim
l→∞

ϕ(Sl) : (Sl)l in S with Sl ↑ some subset ⊃ A
}
.

The formations ϕ◦ and ϕσ are of course close relatives, and are in fact
identical for contents on rings (as in elementary analysis infinite series are
equivalent to infinite sequences), but need not be identical beyond. We see
that ϕσ continues to work where ϕ◦ does not.

At that time I was content with this. But fifteen years later I returned
to the context and observed that besides 1) the new formation also removes
the deficiencies described in 2) and 3). In fact, the formation ϕσ has an
obvious inner regular counterpart ϕσ : P(X)→ [0,∞], defined via decreas-
ing sequences in S. Furthermore ϕσ and ϕσ have obvious non-sequential
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counterparts ϕτ , ϕτ : P(X) → [0,∞], defined via upward/downward di-
rected set systems instead of sequences in S. Then another five years later
I observed that the new formations permit to improve certain concepts and
results related to capacities, and thus contribute to 4) as well.

After this it is no surprise that the envelope formations ϕ� � ϕσ � ϕτ

and ϕ� � ϕσ � ϕτ permit to develop comprehensive extension theories
which fulfil the requirements described above. The theories are of uniform
structure in • = �στ , and the outer and inner developments are parallel in
all essentials. For historical reasons the outer version looks more familiar,
but the inner version is perhaps more important. The Carathéodory class
C(·) is a basic notion in all cases.

There remains one more step. I observed that the outer and inner the-
ories are not only parallel, with their typical little peculiarities, but are in
fact identical. However, this presupposes a drastic step of extension and
abstraction: One has to admit lattices which avoid the empty set like the
entire space, and isotone set functions with values in R or R instead of
[0,∞[ or [0,∞] (not to be confused with the familiar signed measures which
of course need not be isotone). The previous envelope formations retain
their basic structure, but the Carathéodory class C(·) requires an essential
reformulation. I consider this extension to be quite essential for theoretical
reasons, but it is too technical for an introduction. Thus we return to the
previous step. We choose the inner situation for a short description of the
basic concepts and results.

Let ϕ : S→ [0,∞[ be an isotone set function on a lattice S with ∅ ∈ S

and ϕ(∅) = 0. The basic idea is to concentrate on a particular class of ex-
tensions of ϕ. For each choice of • = �στ we define an inner • extension
of ϕ to be an extension of ϕ which is a content α : A→ [0,∞] on a ring A,
with the properties that A also contains S• (:=the system of the respective
intersections), and that

α is inner regular S•,
α|S• is downward • continuous (this is void when • = �).

Thus we impose a characteristic combination of inner regularity and down-
ward continuity. We define ϕ to be an inner • premeasure iff it admits
inner • extensions. Our aim is to characterize those ϕ which are inner • pre-
measures, and then to describe all inner • extensions of ϕ. We shall obtain
a natural and beautiful solution.

The solution will be in terms of the inner envelopes ϕ• : P(X)→ [0,∞].
First note that ϕ�|S = ϕ, while for • = στ we have ϕ•|S = ϕ iff ϕ is
downward • continuous. This is of course a necessary condition in order
that ϕ be an inner • premeasure. Likewise ϕ•(∅) = 0 iff ϕ is (of course
downward) • continuous at ∅. This weaker condition is much easier and
sometimes even trivial, for example when ϕ : Comp(X) → [0,∞[ on a
Hausdorff topological space X. Also ϕ•(∅) = 0 ensures that the traditional
C(ϕ•) is defined. We turn to the main results.



INTRODUCTION XVII

Proposition. If ϕ has inner • extensions then all these α : A→ [0,∞]
are restrictions of ϕ•|C(ϕ•).

Theorem. Assume that ϕ is supermodular. Then the following are
equivalent.

1) ϕ has inner • extensions, that is ϕ is an inner • premeasure.

2) ϕ•|C(ϕ•) is (defined and) an inner • extension of ϕ. Furthermore

if • = � : ϕ•|C(ϕ•) is a content on the algebra C(ϕ•),
if • = στ : ϕ•|C(ϕ•) is a measure on the σ algebra C(ϕ•).

3) ϕ•|C(ϕ•) is (defined and) an extension of ϕ in the crude sense, that is
ϕ•|S = ϕ and S ⊂ C(ϕ•).

4) ϕ(B) = ϕ(A) + ϕ•(B \A) for all A ⊂ B in S.

5) ϕ•|S = ϕ; and ϕ(B) � ϕ(A) + ϕ•(B \A) for all A ⊂ B in S.

5’) ϕ•(∅) = 0; and ϕ(B) � ϕ(A) + ϕB
• (B \ A) for all A ⊂ B in S. Here

ϕB
• :=

(
ϕ|{S ∈ S : S ⊂ B}

)
• for B ∈ S.

We define ϕ to be inner • tight iff it fulfils the second partial condition
in 5’).

It follows that an inner • premeasure ϕ has a unique maximal inner •
extension, which is ϕ•|C(ϕ•). The above theorem and its outer counterpart
are our substitutes for the classical extension theorem. It is obvious that
the present characterizations and explicit representations stand and fall with
the new envelopes.

Construction of Measures from Elementary Integrals

This time we start with the traditional Daniell-Stone representation theo-
rem. It is the counterpart and also an extension of the classical measure
extension theorem.

Theorem. Let I : H → R be a positive (:=isotone) linear functional on
a Stonean lattice subspace H ⊂ R

X of real-valued functions on a nonvoid
set X. Then the following are equivalent.

i) There exists a measure α : A→ [0,∞] on a σ algebra A which represents
I, that is all f ∈ H are integrable α with I(f) =

∫
fdα.

ii) I is σ continuous at 0, that is for each sequence (fl)l in H with pointwise
fl ↓ 0 one has I(fl) ↓ 0.

More famous than this is perhaps the traditional Riesz representation
theorem from topological measure theory.

Theorem. Let X be a locally compact Hausdorff topological space, and

CK(X, R) := {f ∈ C(X, R) : f = 0 outside of some K ∈ Comp(X)}.

Then there is a one-to-one correspondence between the positive linear func-
tionals I : CK(X, R) → R and the Radon measures α : Bor(X) → [0,∞].
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The correspondence is

I(f) =
∫

fdα for all f ∈ CK(X, R).

The drawbacks of the traditional Daniell-Stone theorem are like those
of the classical measure extension theorem. Thus it is of no visible use for
the proof of the traditional Riesz theorem. But this latter theorem does not
fulfil the needs either, because in present-day analysis one is often forced to
exceed the frame of local compactness. Then CK(X, R) becomes too small,
so that the theorem breaks down and has to be filled with new substance.
On the measure side one wants to adhere to the Radon measures. As to
the functional side, one observes that on each Hausdorff topological space
X there is a wealth of semicontinuous real-valued functions which vanish
outside of compact subsets, for example the multiples of the characteristic
functions χK of the K ∈ Comp(X). But this leads to function classes which
are lattice cones and as a rule not lattice subspaces. Thus it seems natural to
search for an extended Riesz theorem on appropriate lattice cones of upper
semicontinuous functions on X with values in [0,∞[.

With this in mind we return to the Daniell-Stone theorem in the abstract
theory. We want to develop the context in the spirit and scope of the
previous part on measure extensions. The above look at the Riesz theorem
confirms our intuitive impression that the former transition from rings to
lattices should reappear as a transition from lattice subspaces to lattice
cones. In fact, we shall see that the final Riesz theorem will become a direct
specialization of the final Daniell-Stone theorem.

We fix a lattice cone E ⊂ [0,∞[X of [0,∞[-valued functions on a nonvoid
set X. E is called primitive iff v − u ∈ E for all u � v in E; equivalent is
E = H+ := {f ∈ H : f � 0} for some (unique) lattice subspace H ⊂ R

X .
It is of utmost importance that E need not be primitive. We assume E to
be Stonean, defined to mean that f ∈ E ⇒ f ∧ t, (f − t)+ ∈ E for all real
t > 0. In view of f = f ∧ t + (f − t)+ this is the familiar notion when E is
primitive. For E we define at once the set system

T(E) := {[f � t] : f ∈ E and t > 0} = {[f � 1] : f ∈ E},

which is a lattice with ∅ ∈ T(E).

Next we fix an elementary integral on E, defined to be an isotone
positive-linear functional I : E → [0,∞[. We are interested in integral
representations of I. We want to define a representation of I to be a
content α : A→ [0,∞] on a ring A such that

for all f ∈ E : f is measurable A and I(f) =
∫

fdα.
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This has to be made precise, except in the special case that A is a σ algebra
and α is a measure. We do this in that we require

for all f ∈ E : [f � t] ∈ A ∀t > 0 and I(f) =

→∞∫

0←

α([f � t])dt.

The first part of the condition means that T(E) ⊂ A. Therefore α produces
the restriction α|T(E). The set function α|T(E) is of obvious importance,
because it suffices to reproduce I by the second part of the condition.

It is a Hahn-Banach consequence that I admits representations iff it has
the truncation properties

(0) I(f ∧ t) ↓ 0 for t ↓ 0 and I(f ∧ t) ↑ I(f) for t ↑ ∞ for all f ∈ E.

But the assumption that I is downward σ continuous does not enforce that
it admits measure representations, except in case that E is primitive where
this follows from the traditional Daniell-Stone theorem. All this shows that
the present notion is too superficial in order to be the central one in our
enterprise.

We turn to the true central notion. For • = �στ we define a • rep-
resentation of I to be a representation α : A → [0,∞] of I such that α
is an inner • extension of α|T(E). This time the word inner is redundant,
because there will be no outer counterpart. Our aim is to characterize those
I which admit • representations, and then to describe all • representations
of I.

We start to define the crude outer and inner envelopes I�, I� : [0,∞]X →
[0,∞] of I to be

I�(f) = inf{I(u) : u ∈ E with u � f},
I�(f) = sup{I(u) : u ∈ E with u � f}.

These envelopes induce set functions Δ,∇ : T(E)→ [0,∞[, defined to be

Δ(A) = I�(χA) and ∇(A) = I�(χA) for A ∈ T(E).

Of course I� � I� and ∇ � Δ. One proves the criterion which follows.

Proposition. Assume that I fulfils (0). A content α : A → [0,∞] on
a ring A which contains T(E) is a representation of I iff ∇ � α|T(E) � Δ.
If furthermore α|T(E) is downward σ continuous then α|T(E) = Δ.

This makes clear that the cases • = στ and • = � fall apart. In the
present introduction we shall restrict ourselves to the case • = στ , which is
the simpler and the more important one. From the former main theorem we
obtain at once what follows.

Consequence (for • = στ). I admits • representations iff it fulfils
(0) and Δ is an inner • premeasure. Then the • representations of I are
the inner • extensions of Δ. In particular I has the unique maximal •
representation Δ•|C(Δ•).
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This is not yet the desired characterization, because it is not in terms of
I itself. In order to achieve this we form for • = στ the precise counterparts
I• : [0,∞]X → [0,∞] of the previous inner • envelopes, that is

Iσ(f) = sup
{

lim
l→∞

I(ul) : (ul)l in E with ul ↓ some function � f
}
,

and the respective Iτ (f). We also form for v ∈ E the satellites Iv
• : [0,∞]X →

[0,∞[ in the same sense as before. In these terms our main theorem then
reads as follows.

Theorem (for • = στ). For an elementary integral I : E → [0,∞[ the
following are equivalent.
1) I admits • representations.
2) I(v) = I(u) + I•(v − u) for all u � v in E.
3) I•|E = I; and I(v) � I(u) + I•(v − u) for all u � v in E.
3’) I•(0) = 0; and I(v) � I(u) + Iv

• (v − u) for all u � v in E.

The two last results are the precise counterpart of the main theorem
on measure extensions for • = στ . It is our substitute for the traditional
Daniell-Stone theorem. We note that

I� � Iσ � Iτ , and I�(f) = Iv
� (f) � Iv

σ(f) � Iv
τ (f) for 0 � f � v ∈ E.

Also I�|E = I, and for • = στ the equivalents to I•|E = I and I•(0) = 0 are
as before. We define I to be • tight iff it fulfils the second partial condition
in 3’). The former crude envelope I� allows to define I to be � tight iff

I(v) � I(u) + I�(v − u) for all u � v in E.

An earlier result due to Topsøe [1976] after Pollard-Topsøe [1975] was that
3’) with � tight instead of • tight implies 1). But the converse is not true.

In order to obtain the traditional Daniell-Stone theorem we assume for a
moment that E is primitive. Then each I is � tight and hence • tight. Thus I
admits • representations iff I•(0) = 0. In this case it has the unique maximal
• representation Δ•|C(Δ•), which in particular is a measure representation
of I. Thus we obtain for • = σ much more than the nontrivial direction in
the traditional Daniell-Stone theorem.

We next attempt to incorporate the Riesz representation theorem. We
assume X to be a Hausdorff topological space. Let E ⊂ [0,∞[X be a
Stonean lattice cone. We need certain conditions on E in order to relate E
to the compact subsets of X. One assumption is that E be concentrated
on compacts, defined to mean that T(E) ⊂ Comp(X). It implies that E
is contained in the class USC+(X) of [0,∞[-valued upper semicontinuous
functions on X, and that its members are bounded. On the other hand,
when E is contained in the subclass

USCK+(X) := {f ∈ USC+(X) : f = 0 outside of some K ∈ Comp(X)},
then E is of course concentrated on compacts. The other assumption is that
E be rich, defined to mean that

χK = inf{f ∈ E : f � χK} for all K ∈ Comp(X).
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To see the relevance of this condition note that CK+(X, R) is rich iff X is
locally compact.

Then the • = τ version of our Daniell-Stone theorem, combined with the
classical Dini theorem, has as an almost immediate consequence the Riesz
type theorem which follows.

Theorem. Assume that the Stonean lattice cone E is concentrated on
compacts and rich. For an elementary integral I : E → [0,∞[ then the
following are equivalent.
0) I admits a Radon measure representation (note that T(E) ⊂ Comp(X) ⊂
Bor(X)).
1) I admits τ representations.
2) I(v) = I(u) + Iτ (v − u) for all u � v in E.
3’) I(f ∧ t) ↓ 0 for t ↓ 0 for all f ∈ E (this is redundant when E ⊂
USCK+(X)); and I is τ tight.
In this case I has the unique Radon measure representation Δτ |Bor(X) with
Bor(X) ⊂ C(Δτ ), which therefore is a τ representation of I.

Let us look at the particular case E ⊂ USCK+(X). Then each Radon
measure α : Bor(X) → [0,∞] defines an elementary integral I on E via
I(f) =

∫
fdα for f ∈ E. This I is τ tight in view of 0)⇒3’). Thus we

obtain what follows.
Theorem. Assume that the Stonean lattice cone E ⊂ USCK+(X) is

rich. Then there is a one-to-one correspondence between the elementary
integrals I : E → [0,∞[ which are τ tight and the Radon measures α :
Bor(X)→ [0,∞]. The correspondence is I(f) =

∫
fdα for all f ∈ E.

It seems that this is the first Riesz representation theorem which applies
to all Hausdorff topological spaces X and contains the traditional Riesz
theorem as a direct specialization. In fact, if E is primitive then each I is
� tight and hence τ tight, as we have seen above. Thus for locally compact
X and E = CK+(X, R) we obtain the the traditional Riesz theorem.




