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Preface 

This book is an introduction to the theory of complex manifolds and their 
deformations. 

Deformation of the complex structure of Riemann surfaces is an idea 
which goes back to Riemann who, in his famous memoir on Abelian 
functions published in 1857, calculated the number of effective parameters 
on which the deformation depends. Since the publication of Riemann's 
memoir, questions concerning the deformation of the complex structure of 
Riemann surfaces have never lost their interest. 

The deformation of algebraic surfaces seems to have been considered 
first by Max Noether in 1888 (M. Noether: Anzahl der Modulen einer Classe 
algebraischer Fliichen, Sitz. K6niglich. Preuss. Akad. der Wiss. zu Berlin, 
erster Halbband, 1888, pp. 123-127). However, the deformation of higher 
dimensional complex manifolds had been curiously neglected for 100 years. 
In 1957, exactly 100 years after Riemann's memoir, Frolicher and Nijenhuis 
published a paper in which they studied deformation of higher dimensional 
complex manifolds by a differential geometric method and obtained an 
important result. (A. Fr61icher and A. Nijenhuis: A theorem on stability of 
complex structures, Proc. Nat. Acad. Sci., U.S.A., 43 (1957), 239-241). 

Inspired by their result, D. C. Spencer and I conceived a theory of 
deformation of compact complex manifolds which is based on the primitive 
idea that, since a compact complex manifold M is composed of a finite 
number of coordinate neighbourhoods patched together, its deformation 
would be a shift in the patches. Quite naturally it follows from this idea 
that an infinitesimal deformation of M should be represented by an element 
of the cohomology group Hl(M, 0) of M with coefficients in the sheaf 0 
of germs of holomorphic vector fields. However, there seemed to be no 
reason that any given element of Hl(M,0) represents an infinitesimal 
deformation of M. In spite of this, examination of familiar examples of 
compact complex manifolds M revealed a mysterious phenomenon that 
dim Hl(M, 0) coincides with the number of effective parameters involved 
in the definition of M. In order to clarify this mystery, Spencer and I 
developed the theory of deformation of compact complex manifolds. The 
process of the development was the most interesting experience in my whole 
mathematical life. It was similar to an experimental science developed by 



Vlll Preface 

the interaction between experiments (examination of examples) and theory. 
In this book I have tried to reproduce this interesting experience; however 
I could not fully convey it. Such an experience may be a passing phenomenon 
which cannot be reproduced. 

The theory of deformation of compact complex manifolds is based on 
the theory of elliptic partial differential operators expounded in the Appen
dix. I would like to express my deep appreciation to Professor D. Fujiwara 
who kindly wrote the Appendix and also to Professor K. Akao who spent 
the time and effort translating this book into English. 

Tokyo, Japan 
January, 1985 

KUNIHIKO KODAlRA 
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