Graduate Texts in Mathematics

Editorial Board

F. W. Gehring

P. R. Halmos Managing Editor

C.C.Moore

Artist's conception of the 3-adic unit disk.

Drawing by A.T. Fomenko of Moscow State University, Moscow, U.S.S.R.

Neal Koblitz

p-adic Numbers, *p*-adic Analysis, and Zeta-Functions

Springer-Verlag New York Heidelberg Berlin Neal Koblitz Harvard University Department of Mathematics Cambridge, Massachusetts 02138 USA

Editorial Board

P. R. Halmos Managing Editor University of California Department of Mathematics Santa Barbara, California 93106 USA F. W. Gehring University of Michigan Department of Mathematics Ann Arbor, Michigan 48104 USA C. C. Moore University of California Department of Mathematics Berkeley, California 94720 USA

AMS Subject Classifications: 10-01, 12-01, 12B10, 14B10

Library of Congress Cataloging in Publication Data

Koblitz, Neal, 1948– P-adic numbers, p-adic analysis, and zeta-functions.

(Graduate texts in mathematics; 58) Bibliography: p. 1. p-adic numbers. 2. Functions, Zeta. I. Title. II. Series. QA241.K674 512'.75 77-21869

All rights reserved

No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag

©1977 by Springer-Verlag, New York Inc.

Softcover reprint of the hardcover 1st edition 1977

987654321

ISBN-13: 978-1-4684-0049-6 c-ISBN-13: 978-1-4684-0047-2 DOI: 10.1007/978-1-4684-0047-2

To Professor Mark Kac

Preface

These lecture notes are intended as an introduction to p-adic analysis on the elementary level. For this reason they presuppose as little background as possible. Besides about three semesters of calculus, I presume some slight exposure to more abstract mathematics, to the extent that the student won't have an adverse reaction to matrices with entries in a field other than the real numbers, field extensions of the rational numbers, or the notion of a continuous map of topological spaces.

The purpose of this book is twofold: to develop some basic ideas of p-adic analysis, and to present two striking applications which, it is hoped, can be as effective pedagogically as they were historically in stimulating interest in the field. The first of these applications is presented in Chapter II, since it only requires the most elementary properties of Q_p ; this is Mazur's construction by means of p-adic integration of the Kubota-Leopoldt p-adic zeta-function, which "p-adically interpolates" the values of the Riemann zeta-function at the negative odd integers. My treatment is based on Mazur's Bourbaki notes (unpublished). The book then returns to the foundations of the subject, proving extension of the *p*-adic absolute value to algebraic extensions of \mathbf{Q}_p , constructing the *p*-adic analogue of the complex numbers, and developing the theory of p-adic power series. The treatment highlights analogies and contrasts with the familiar concepts and examples from calculus. The second main application, in Chapter V, is Dwork's proof of the rationality of the zeta-function of a system of equations over a finite field, one of the parts of the celebrated Weil Conjectures. Here the presentation follows Serre's exposition in Séminaire Bourbaki.

These notes have no pretension to being a thorough introduction to p-adic analysis. Such topics as the Hasse-Minkowski Theorem (which is in Chapter 1 of Borevich and Shafarevich's *Number Theory*) and Tate's thesis (which is also available in textbook form, see Lang's *Algebraic Number Theory*) are omitted.

Moreover, there is no attempt to present results in their most general form. For example, p-adic L-functions corresponding to Dirichlet characters are only discussed parenthetically in Chapter II. The aim is to present a selection of material that can be digested by undergraduates or beginning graduate students in a one-term course.

The exercises are for the most part not hard, and are important in order to convert a passive understanding to a real grasp of the material. The abundance of exercises will enable many students to study the subject on their own, with minimal guidance, testing themselves and solidifying their understanding by working the problems.

p-adic analysis can be of interest to students for several reasons. First of all, in many areas of mathematical research—such as number theory and representation theory—p-adic techniques occupy an important place. More naively, for a student who has just learned calculus, the "brave new world" of non-Archimedean analysis provides an amusing perspective on the world of classical analysis. p-adic analysis, with a foot in classical analysis and a foot in algebra and number theory, provides a valuable point of view for a student interested in any of those areas.

I would like to thank Professors Mark Kac and Yu. I. Manin for their help and encouragement over the years, and for providing, through their teaching and writing, models of pedagogical insight which their students can try to emulate.

Logical dependence of chapters

Contents

p-adic numbers		
1.	Basic concepts	1
2.	Metrics on the rational numbers	2
	Exercises	6
3.	Review of building up the complex numbers	8
4.	The field of p -adic numbers	10
5.	Arithmetic in \mathbf{Q}_{p}	14
	Exercises	19
Ch	apter II	
p-	adic interpolation of the Riemann zeta-function	21
1.	A formula for $\zeta(2k)$	22
2.	<i>p</i> -adic interpolation of the function $f(s) = a^s$	26
	Exercises	28
3.	<i>p</i> -adic distributions	30
	Exercises	33
4.	Bernoulli distributions	34
5.	Measures and integration	36
	Exercises	41
6.	The <i>p</i> -adic ζ -function as a Mellin–Mazur transform	42
7.	A brief survey (no proofs)	47
	Exercises	51
Ch	apter III	
Building up Ω		52
1.	Finite fields	52
	Exercises	57
		ix

Chapter I

Contents

Extension of norms	57
Exercises	65
The algebraic closure of \mathbf{Q}_{p}	65
Ω	70
Exercises	72
	Extension of norms Exercises The algebraic closure of \mathbf{Q}_p Ω Exercises

Chapter IV

adic power series	75
Elementary functions	75
The Artin–Hasse exponential	82
Exercises	86
Newton polygons for polynomials	89
Newton polygons for power series	91
Exercises	99
	adic power series Elementary functions The Artin-Hasse exponential Exercises Newton polygons for polynomials Newton polygons for power series Exercises

Chapter V

Rationality of the zeta-function of a set of equations				
over a finite field		101		
1.	Hypersurfaces and their zeta-functions	101		
	Exercises	106		
2.	Characters and their lifting	108		
3.	A linear map on the vector space of power series	110		
4.	p-adic analytic expression for the zeta-function	114		
	Exercises	116		
5.	The end of the proof	117		
Bibliography				