Contents

Introduction	1
CHAPTER I. An Analogue of the Bezout Theorem for a System of	
Real Elementary Equations	9
§1.1. General estimate of the number of roots of a system of	,
equations	10
§1.2. Estimate of the number of solutions of a system of	10
quasipolynomials	12
§1.3. A version of the general estimate of the number of roots of a	12
system of equations	13
§1.4. Estimate of the number of solutions of a system of	1.5
trigonometric quasipolynomials	14
§1.5. Elementary functions of many real variables	16
§1.6. Estimate of the number of solutions of a system of	10
elementary equations	17
§1.7. Remarks	18
CHAPTER II. Two Simple Versions of the Theory of Fewnomials	21
§2.1. Rolle's theorem for dynamical systems	21
§2.2. Algebraic properties of <i>P</i> -curves	21
§2.3. One more version of the theory of fewnomials	23 27
CHAPTER III. Analogues of the Theorems of Rolle and Bezout for	
Separating Solutions of Pfaff Equations	• •
§3.1. Coorientation and linking index	31
§3.2. Separating submanifolds	33
§3.3. Separating solutions of Pfaff equations	36
	39
§3.4. Separating solutions on 1-dimensional manifolds; an analogue of Rolle's theorem	
§3.5. Higher-dimensional analogues of Rolle's estimate	42
83.6. Ordered systems of Dioff countings their care.	45
§3.6. Ordered systems of Pfaff equations, their separating	51

33.7. Estimate of the number of points in a zero-dimensional	
separating solution of an ordered system of Pfaff equations	
via the generalised number of zeroes of the characteristic	
sequence of the system	56
§3.8. The virtual number of zeroes	62
§3.9. Representative families of divisorial sequences	65
§3.10. The virtual number of zeroes on a manifold equipped with a volume form	68
§3.11. Estimate of the virtual number of zeroes of a sequence with	
isolated singular points via their order and index	73
§3.12. A series of analogues of Rolle's estimate and Bezout's	, ,
theorem	76
§3.13. Fewnomials in a complex region and Newton polyhedra	81
§3.14. Estimate of the number of connected components and the	
sum of the Betti numbers of higher-dimensional separating	
solutions	89
CHAPTER IV. Pfaff Manifolds	95
§4.1. Simple affine Pfaff manifolds	96
§4.2. Affine Pfaff manifolds	98
§4.3. Pfaff A-manifolds	103
§4.4. Pfaff manifolds	107
§4.5. Pfaff functions in Pfaff domains in \mathbb{R}^n	110
§4.6. Results	112
CHAPTER V. Real-Analytic Varieties with Finiteness Properties	
and Complex Abelian Integrals	115
§5.1. Basic analytic varieties	116
§5.2. Analytic Pfaff manifolds	117
§5.3. Finiteness theorems	119
§5.4. Abelian integrals	120
Conclusion	123
Appendix. Pfaff equations and limit cycles, by Yu. S. II' yashenko	129
Bibliography	133
Index	137