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Preface to the English Edition 

This book is aimed at a wide circle of readers, including mathematicians, 
theoretical physicists, and engineers. It contains a group theoretic treatment 
of the classical problems of harmonic analysis: eigenfunctions of the Fourier 
operator, the Fourier transform in the complex domain and related trans­
forms (the Laplace, Hilbert, Borel and Carleman transforms), shift-invariant 
subspaces, unitary representations of groups, positive definite functions, the 
arithmetic of characteristic functions of probability measures, the complete­
ness and compactness of systems of translations, Tauberian theory, and prob­
lems of spectral analysis and spectral synthesis. The main notions, ideas and 
facts of invariant integration and duality, as related to the Fourier transform 
on groups, are illustrated by numerous examples, as are the required group 
theoretic methods. 

A great number of themes of modern mathematics is discussed under the 
title "Harmonic Analysis." (cf. the introductory Volume 15 of the present 
series). The range of these themes is so remarkably wide that a specialist 
working on one of them may well be unaware of the terminology used by his 
colleague working on another (and vice versa), even though both of them are 
sure that they work on harmonic analysis or its applications. One of the main 
incentives for the author to write this volume was therefore to bring together 
as many different branches of commutative harmonic analysis as possible in 
order to emphasize their interactions. 

At the turn of the nineteenth century, two major events happened in math­
ematics whose impact cannot be overestimated. On the one hand, Fourier had, 
as Riemann put it, correctly explained the nature of trigonometric series, and, 
on the other, Gauss made use of numerical characters in arithmetic in a sys­
tematic way, thus enriching it with new tools, discoveries and applications. 
These two disciplines looked so different that their common algebraic (group 
theoretic) nature was understood only in the twentieth century. 

Meanwhile, half a century after Fourier and Gauss, Riemann gave the first 
rigorous foundation of the notion of the integral in his thesis devoted to 
trigonometric series. This circumstance had almost a symbolic nature: from 
that moment on, the notions of the integral and the trigonometric series be­
came inseparable. The desire to pursue these connections was another impor­
tant incentive for writing this book. 



VIII Preface to the English Edition 

The author is aware of the fact that his understanding of the main themes 
of harmonic analysis, his choices and approach are necessarily subjective. Nev­
ertheless, he hopes that this survey will be of interest to a wide audience. It is 
written for the general reader and yet may have some points that may prove 
stimulating to the specialist. 

The present edition is a thoroughly revised, corrected and expanded ver­
sion of the original Russian edition. Many factors motivated this choice. The 
Russian edition was published more than seven years ago, during which time 
many new important results (and even areas) worthy of mention appeared. 
The author had the possibility of discussing the topics presented below with 
numerous mathematicians working in this field and so became aware of many 
publications that are of direct interest for the subject of this volume. As a re­
sult the list of references was substantially expanded. And there was another 
reason. This volume was conceived as an introductory volume to a subsequent, 
more specialized publication, devoted to the spectral theory of functions and 
its different applications. As the latter book has had to be indefinitely post­
poned, the author decided to add some of its topics to this volume. 

The author is very grateful to V. P. Havin for his invaluable advices, dis­
cussions and support. 

The author's stimulating discussions with V. Katsnel'son were extremely 
fruitful and helped to improve the text. Special thanks are due to H. Helson 
of the University of California (Berkeley) and to K. Ross of the University of 
Oregon for useful discussions. The author wishes to express his gratitude to 
the Weizmann Institute of Sciences in Israel for giving him the opportunity 
to complete the work on this English edition. The author is grateful also to 
RFBR (grant 95-01-00965a) for its support. 

Finally, the author is pleased to thank the translators of this volume, 
Dr. S. Dynin and Mr. D. Dynin, for their patient and attentive collaboration. 

January, 1998 V. P. Gurarii 
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Preface 

For a long time now motions with periodic properties have been viewed 
as summations of simpler harmonic motions. The problem of retrieving the 
pure harmonics hidden in a complicated motion was called a harmonic analysis 
problem, while the problem of reconstructing a complicated motion from these 
harmonics became known as a harmonic synthesis problem. 

Around the turn of the 19th century pure harmonics were found to satisfy 
the equation f(x + y) = f(x)f(y), x, Y E JR, which indicated that certain 
group principles lie at the foundation of harmonic analysis. Approximately 
at the same time appeared the so-called multiplicative numerical functions in 
arithmetic. They satisfied the equation f(m . n) = f(m) . f(n) for relatively 
prime m and nj the study of such functions on the residue ring mod m led 
to the definition of numerical characters mod m . If a numerical character X is 
restricted to the group C;, of invertible elements of the residue ring mod m, 
the relation x(a · b) = x(a)x(b), a, bEe;", becomes analogous to the equation 
for pure harmonics. This analogy is not a coincidence. 

This implicit group point of view has accompanied harmonic analysis (and 
number theory) along the many stages of their more than 200-year-Iong his­
tory. 

The decisive breakthrough came as the result (well prepared by previous 
research) of a rapid succession of papers falling within just a single decade: 
from the mid-twenties to the mid-thirties of this century. 

The rapid development of quantum mechanics stimulated research in opera­
tor theory and group representation theory. Initiated during the mid-twenties, 
intensive study of topological groups and their representations led to Haar's 
discovery of the basic construction of invariant integration on a topologi­
cal group. Bohr's theory of almost periodic functions influenced the work 
of Wiener, Bochner and many other analysts. They enriched the technical 
arsenal of harmonic analysis and the scope of its applications (statistical me­
chanics, ergodic theory, time series, etc.) The new notion of the generalized 
Fourier transform made it possible to consider Plancherel's theory simulta­
neously with Bohr's theory, the continuous spectrum with the discrete. The 
Pontrjagin-van Kampen duality opened the way for an unobstructed develop­
ment of Fourier analysis on locally compact abelian groups, allowing Fourier 
series, Fourier integrals and expansions via numerical characters to be viewed 
as objects of the same kind. The Peter-Weyl theory made it possible for von 
Neumann to analyze almost periodic functions on groups by connecting them 
to group representation theory. Along with the many other discoveries of that 
period, this led to the inclusion of group theorethical methods into the tool 
kit of harmonic analysis. 

The intensive studies which followed resulted in the development of a vast 
field of abstract harmonic analysis for which the use of group theoretical 
methods is especially characteristic. 
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The basic principles which underpin these methods, along with the history 
of their origins and their impact on the development of many mathematical 
fields from mathematical physics to arithmetic, are described in Mackey's 
captivating survey (cf. Mackey (1978)), to which we will refer many times in 
our exposition. 

Let us list some research directions in modern harmonic analysis: positive 
definite functions and kernels; almost periodic functions and representations; 
spectral function theory and its central problem of spectral synthesis; func­
tions on groups periodic in the mean and convolution equations; harmonic 
analysis on totally disconnected groups and nontrigonometric Fourier series 
(Walsh-type series); harmonic analysis on local fields and on the adele ring 
and its applications in number theory and representation theory; the mysteri­
ous Banach algebra of bounded Borel measures on locally compact abelian 
groups and its hidden "surprises," foremost among which is the so-called 
Wiener-Pitt "hidden spectrum" effect; Tauberian theory and harmonic anal­
ysis; translation-invariant operators and invariant subspaces; cardinal series, 
the Sampling Theorem and its role in signal theory; wavelets; and the list can 
be continued. All of these areas are rapidly developing, and progress in them 
cannot avoid the group point of view. 

The limited space of this book prevents us from giving even a superfluous 
survey of the subjects mentioned. Nevertheless, we have tried to give the 
reader an idea of them and of the general principles behind them, all while at 
the same time trying to retain some unity of exposition, and to this end we 
have divided the book into two independent parts. 

The first part (Chapter 1) is devoted to the problems of harmonic analysis 
on the real axis R Their set-up is mostly dictated by the group nature of IR 
(they can therefore be considered in a more general group situation). Never­
theless, their solution requires various methods of function theory. Sometimes 
these methods seem to be absolutely necessary. At other times one may hope 
to either transform them in such a way as to make them applicable in a more 
general group situation or to find an alternative group approach. There are 
many interesting books devoted to classical Fourier analysis and its methods, 
such as the elegant book of H. Helson (Helson (1983)), two monographs of 
H. Dym and H. P. McKean (Dym, McKean (1972) and (1976)) which are very 
close to our Chapter 1, T.W. Korner's very rich book which has numerous 
examples and applications (Korner (1988)), G. B. Folland's book (Folland 
(1989)) which opens new areas and new horizons of the modern harmonic 
analysis, as well as the books of P. Koosis (Koosis (1988)) and V. Havin and 
B. Joericke (Havin, Joericke (1994)), which contain methods and tools that 
may be of help in the study of different problems of harmonic analysis, and 
many others (we will refer to them in the text) . 

In the second part (Chapter 2) we deal with the basic notions and facts 
lying at the foundation of modern abstract harmonic analysis. The contents 
of this chapter are illustrated with numerous examples, which provide an 
approach to some of the themes listed above. 
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Despite the independence of the two chapters, the intersection of their 
contents is nonempty. Therefore, if we deal freely with a notion or definition in 
one of the chapters without explaining it, then the corresponding explanation 
should be sought in the other chapter, using, for example, the subject index. 

Since we will often refer, especially in Chapter 2, to the encyclopaedic 
monograph of Hewitt and Ross (cf. Hewitt, Ross (1963) and (1970)), we will 
denote it by the abbreviation HR. Furthemore, we will use throughout the 
book the standard abbreviation LCA group for a locally compact abelian 
group. 

A reference to an article from the series Encyclopaedia of Mathematical 
Sciences will be indicated only by the author's name and the volume number. 

We want to say a few words about the organization of material in this book, 
the cross-references to equations, theorems, definitions, etc. Each chapter con­
sists of sections, and each section consists of subsections. Each subsection has 
its own numeration of equations and definitions; for example, a reference to 
Equation (2) inside of a subsection indicates Equation (2) of the same subsec­
tion. A reference to an eq~ation outside of a subsection is given as follows: for 
example, (8.4.1) refers to Equation (1) from Subsection 4 of Section 8. Simi­
larly, Corollary 8.1.4 is to be found in Section 8, Subsection 1, under number 
4. Finally, Proposition 2.1.(7) will be found under number (7), in Subsection 
1 of Section 2. 

The reader should be warned that "proofs" given in the text are rather 
"sketches of proof". However we hope they are sufficiently suggestive for any 
interested mathematician to recover all missing details. 

In conclusion, I express my gratitude to N. K. Nikolskii, who read the pre­
liminary manuscript of the book and made a series of remarks, which I tried 
to take into account. I am also grateful to Yu. 1. Lyubarskij who read the final 
version of the manuscript and corrected some of its inaccuracies. 

Various parts of the manuscript where brought to attention of V.Ya. Lin, 
1. V. Ostrovskij, Yu. L. Rodin, V. P. Havin and G. M. Khenkin. The author is 
grateful to all of them for their advice and support. 


