Graduate Texts in Mathematics 156

Editorial Board
J.H. Ewing F.W. Gehring P.R. Halmos

Graduate Texts in Mathematics

1 Takeuti/Zaring. Introduction to Axiomatic Set Theory. 2nd ed.
2 Oxtoby. Measure and Category. 2nd ed.
3 Schaeffer. Topological Vector Spaces.
4 Hilton/Stammbach. A Course in Homological Algebra.
5 MacLane. Categories for the Working Mathematician.
6 Hughes/Piper. Projective Planes.
7 Serre. A Course in Arithmetic.
8 Takeuti/Zaring. Axiometic Set Theory.
9 Humphreys. Introduction to Lie Algebras and Representation Theory.
10 Cohen. A Course in Simple Homotopy Theory.
11 Conway. Functions of One Complex Variable. 2nd ed.
12 Beals. Advanced Mathematical Analysis.
13 Anderson/Fuller. Rings and Categories of Modules. 2nd ed.
14 Golubitsky / Gulemin. Stable Mappings and Their Singularities.
15 Berberian. Lectures in Functional Analysis and Operator Theory.
16 Winter. The Structure of Fields.
17 Rosenblattr. Random Processes. 2nd ed.
18 Halmos. Measure Theory.
19 Halmos. A Hilbert Space Problem Book. 2nd ed.
20 Husemoller. Fibre Bundles. 3rd ed.
21 Humphreys. Linear Algebraic Groups.
22 Barnes/Mack. An Algebraic Introduction to Mathematical Logic.
23 Greub. Linear Algebra. 4th ed.
24 Holmes. Geometric Functional Analysis and Its Applications.
25 Hewitt/Stromberg. Real and Abstract Analysis.
26 Manes. Algebraic Theories.
27 Kelley. General Topology.
28 Zariski/Samuel. Commutative Algebra. Vcl. I.
29 Zariski/Sanulel. Commutative Algebra. Vol. II.
30 Jacobson. Lectures in Abstract Algebra I. Basic Concepts.
31 Jacobson. Lectures in Abstract Algebra II. Linear Algebra.

32 Jacobson. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.
33 Hirsch. Differential Topology.
34 Spitzer. Principles of Random Walk. 2nd ed.
35 Wermer. Banach Algebras and Several Complex Variables. 2nd ed.
36 Kelley / Namioka et al. Linear Topological Spaces.
37 Monk. Mathematical Logic.
38 Gralert/Fritzsche. Several Complex Variables.
39 Arveson. An Invitation to C^{*}-Algebras
40 Kemeny/Snell/Knapp. Denumerable Markov Chains. 2nd ed.
41 Apostol. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
42 Serre. Linear Representations of Finite Groups.
43 Gillalan/Jerison. Rings of Contimuous Functions.
44 Kendig. Elementary Algebraic Geometry.
45 Loève. Probability Theory I. 4th ed.
46 Loève. Probability Theory II. 4th ed.
47 Moise. Geometric Topology in Dimensions 2 and 3.
48 SACHS/WU. General Relativity for Mathematicians.
49 Grienberg/Weir. Linear Geometry. 2nd ed.
50 Edwards. Fermat's Last Theorem.
51 Klingenberg.A Course in Differential Geometry:
52 Hartshorne. Algebraic Geometry.
53 Manin. A Course in Mathematical Logic
54 Graver/Watkins. Combinatorics with Emphasis on the Theory of Graphs.
55 Brown/Pearcy. Introduction to Operator Theory I: Elements of Functional Analysis.
56 Massey. Algebraic Topology: An Introduction.
57 Crowell/Fox. Introduction to Knot Theory.

Alexander S. Kechris

Classical Descriptive Set Theory

With 34 Illustrations

Springer-Verlag
New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest

Alexander S. Kechris
Alfred P. Sloan Laboratory of
Mathematics and Physics
Mathematics 253-37
California Institute of Technology
Pasadena, CA 91125-0001

Editorial Board

J.H. Ewing
Department of
Mathematics
Indiana University
Bloomington, IN 47405
USA
F.W. Gehring
Department of
Mathematics
University of Michigan
Ann Arbor, MI 48109
USA
P.R. Halmos
Department of Mathematics
Santa Clara University
Santa Clara, CA 95053 USA

Mathematics Subject Classifications (1991): 04-01, 04A15, 28A05, 54H05
Library of Congress Cataloging-in-Publication Data
Kechris, A. S., 1946-
Classical descriptive set theory / Alexander S. Kechris.
p. cm. - (Graduate texts in mathematics : vol. 156)

Includes bibliographical references and index.
ISBN-13: 978-1-4612-8692-9 e-ISBN-13: 978-1-4612-4190-4
DOI: 10.1007/978-1-4612-4190-4

1. Set theory. I. Title. II. Series: Graduate texts in
mathematics : 156 .
QA248.K387 1994
$511.3^{\prime} 22$ dc20 94-30471
Printed on acid-free paper.
(c) 1995 Springer-Verlag New York. Inc.

Softcover reprint of the hardcover Ist edition 1995
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA). except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Frederick H. Bartlett; manufacturing supervised by Jacqui Ashri. Photocomposed pages prepared from the author's $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ files using Springer-Verlag's plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macro.

To Alexandra and Olympia

Preface

This book is based on some notes that I prepared for a class given at Caltech during the academic year 1991-92, attended by both undergraduate and graduate students. Although these notes underwent several revisions, which included the addition of a new chapter (Chapter V) and of many comments and references, the final form still retains the informal and somewhat compact style of the original version. So this book is best viewed as a set of lecture notes rather than as a detailed and scholarly monograph.

I would like to thank R. Dougherty, H. Ki, X. Li, T. Linton, A. Louveau, J. Mycielski, F. van Engelen, and T. Zavisca for many helpful comments and suggestions. I am particularly grateful to A. Andretta, H. Becker, S. Solecki, and S. M. Srivastava for their extensive and detailed criticism as well as numerous corrections, which substantially improved the presentation.

It is my pleasure to acknowledge the financial support of the National Science Foundation and the help from the Mathematics Department at Caltech while I was writing this book. In particular, I would like to thank J. Madow and J. Cassidy for typing the manuscript and B. Turring for preparing the diagrams.

Alexander S. Kechris

Contents

Preface vii
Introduction xv
About This Book xvii
Chapter I
Polish Spaces 1

1. Topological and Metric Spaces 1
1.A Topological Spaces 1
1.B Metric Spaces 2
2. Trees 5
2.A Basic Concepts 5
2.B Trees and Closed Sets 7
2.C Trees on Products 9
2.D Leftmost Branches 9
2.E Well-founded Trees and Ranks 10
2.F The Well-founded Part of a Tree 11
2.G The Kleene-Brouwer Ordering 11
3. Polish Spaces 13
3.A Definitions and Examples 13
3.B Extensions of Continuous Functions and Homeomorphisms 15
3.C Polish Subspaces of Polish Spaces 17
4. Compact Metrizable Spaces 18
4.A Basic Facts 18
4.B Examples 19
4.C A Universality Property of the Hilbert Cube 22
4.D Continuous Images of the Cantor Space 23
4.E The Space of Continuous Functions on a Compact Space 24
4.F The Hyperspace of Compact Sets 24
5. Locally Compact Spaces 29
6. Perfect Polish Spaces 31
6.A Embedding the Cantor Space in Perfect Polish Spaces 31
6.B The Cantor-Bendixson Theorem 32
6.C Cantor-Bendixson Derivatives and Ranks 33
7. Zero-dimensional Spaces 35
7.A Basic Facts 35
7.B A Topological Characterization of the Cantor Space 35
7.C A Topological Characterization of the Baire Space 36
7.D Zero-dimensional Spaces as Subspaces of the Baire Space 38
7.E Polish Spaces as Continuous Images of the Baire Space 38
7.F Closed Subsets Homeomorphic to the Baire Space 39
8. Baire Category 41
8.A Meager Sets 41
8.B Baire Spaces 41
8.C Choquet Games and Spaces 43
8.D Strong Choquet Games and Spaces 44
8.E A Characterization of Polish Spaces 45
8.F Sets with the Baire Property 47
8.G Localization 48
8.H The Banach-Mazur Game 51
8.I Baire Measurable Functions 52
8.J Category Quantifiers 53
8.K The Kuratowski-Ulam Theorem 53
8.L Some Applications 55
8.M Separate and Joint Continuity 56
9. Polish Groups 58
9.A Metrizable and Polish Groups 58
9.B Examples of Polish Groups 58
9.C Basic Facts about Baire Groups and Their Actions 60
9.D Universal Polish Groups 63
Chapter II
Borel Sets 65
10. Measurable Spaces and Functions 65
10.A Sigma-Algebras and Their Generators 65
10.B Measurable Spaces and Functions 66
11. Borel Sets and Functions 68
11.A Borel Sets in Topological Spaces 68
11.B The Borel Hierarchy 68
12. C Borel Functions 70
13. Standard Borel Spaces 73
12.A Borel Sets and Functions in Separable Metrizable Spaces 73
12.B Standard Borel Spaces 74
12.C The Effros Borel Space 75
12.D An Application to Selectors 77
12.E Further Examples 78
12.F Standard Borel Groups 80
14. Borel Sets as Clopen Sets 82
13.A Turning Borel into Clopen Sets 82
13.B Other Representations of Borel Sets 83
13.C Turning Borel into Continuous Functions 84
15. Analytic Sets and the Separation Theorem 85
14.A Basic Facts about Analytic Sets 85
14.B The Lusin Separation Theorem 87
14.C Souslin's Theorem 87
16. Borel Injections and Isomorphisms 89
15.A Borel Injective Images of Borel Sets 89
15.B The Isomorphism Theorem 90
15.C Homomorphisms of Sigma-Algebras Induced by Point Maps 91
15.D Some Applications to Group Actions 92
17. Borel Sets and Baire Category 94
16.A Borel Definability of Category Notions 94
16.B The Vaught Transforms 95
16.C Connections with Model Theory 96
16.D Connections with Cohen's Forcing Method 99
18. Borel Sets and Measures 103
17.A General Facts on Measures 103
17.B Borel Measures 105
17.C Regularity and Tightness of Measures 107
17.D Lusin's Theorem on Measurable Functions 108
17.E The Space of Probability Borel Measures 109
17.F The Isomorphism Theorem for Measures 116
19. Uniformization Theorems 120
18.A The Jankov, von Neumann Uniformization Theorem 120
18.B "Large Section" Uniformization Results 122
18.C "Small Section" Uniformization Results 123
18.D Selectors and Transversals 128
20. Partition Theorems 129
19.A Partitions with a Comeager or Non-meager Piece 129
19.B A Ramsey Theorem for Polish Spaces 130
19.C The Galvin-Prikry Theorem 132
19.D Ramsey Sets and the Ellentuck Topology 132
19.E An Application to Banach Space Theory 134
21. Borel Determinacy 137
20.A Infinite Games 137
20.B Determinacy of Closed Games 138
20.C Borel Determinacy 140
20.D Game Quantifiers 147
22. Games People Play 149
21.A The *-Games 149
21.B Unfolding 150
21.C The Banach-Mazur or ${ }^{* *}$-Games 151
21.D The General Unfolded Banach-Mazur Games 153
21.E Wadge Games 156
21.F Separation Games and Hurewicz's Theorem 160
21.G Turing Degrees 164
23. The Borel Hierarchy 167
22.A Universal Sets 167
22.B The Borel versus the Wadge Hierarchy 169
22.C Structural Properties 170
22.D Additional Results 173
22.E The Difference Hierarchy 175
24. Some Examples 179
23.A Combinatorial Examples 179
23.B Classes of Compact Sets 181
23.C Sequence Spaces 182
23.D Classes of Continuous Functions 182
23.E Uniformly Convergent Sequences 185
23.F Some Universal Sets 185
23.G Further Examples 188
25. The Baire Hierarchy 190
24.A The Baire Classes of Functions 190
24.B Functions of Baire Class 1 192
Chapter III
Analytic Sets 196
26. Representations of Analytic Sets 196
25.A Review 196
25.B Analytic Sets in the Baire Space 197
25.C The Souslin Operation 198
25.D Wellordered Unions and Intersections of Borel Sets 201
25.E Analytic Sets as Open Sets in Strong Choquet Spaces 202
27. Universal and Complete Sets 205
26.A Universal Analytic Sets 205
26.B Analytic Determinacy 205
26.C Complete Analytic Sets 206
26.D Classification up to Borel Isomorphism 207
28. Examples 209
27.A The Class of Ill-founded Trees 209
27.B Classes of Closed Sets 209
27.C Classes of Structures in Model Theory 212
27.D Isomorphism 213
27.E Some Universal Sets 214
27.F Miscellanea 215
29. Separation Theorems 217
30. A The Lusin Separation Theorem Revisited 217
28.B The Novikov Separation Theorem 219
28.C Borel Sets with Open or Closed Sections 220
28.D Some Special Separation Theorems 221
28.E "Hurewicz-Type" Separation Theorems 224
31. Regularity Properties 226
29.A The Perfect Set Property 226
29.B Measure, Category, and Ramsey 226
29.C A Closure Property for the Souslin Operation 227
29.D The Class of C-Sets 230
29.E Analyticity of "Largeness" Conditions on Analytic Sets 230
32. Capacities 234
30.A The Basic Concept 234
30.B Examples 234
30.C The Choquet Capacitability Theorem 237
33. Analytic Well-founded Relations 239
31.A Bounds on Ranks of Analytic Well-founded Relations 239
31.B The Kunen-Martin Theorem 241
Chapter IV
Co-Analytic Sets 242
34. Review 242
32.A Basic Facts 242
32.B Representations of Co-Analytic Sets 243
32.C Regularity Properties 244
35. Examples 245
33.A Well-founded Trees and Wellorderings 245
33.B Classes of Closed Sets 245
33.C Sigma-Ideals of Compact Sets 246
33.D Differentiable Functions 248
33.E Everywhere Convergence 251
33.F Parametrizing Baire Class 1 Functions 252
33.G A Method for Proving Completeness 253
33.H Singular Functions 254
33.I Topological Examples 255
33.J Homeomorphisms of Compact Spaces 257
33.K Classes of Separable Banach Spaces 262
33.L Other Examples 266
36. Co-Analytic Ranks 267
34.A Ranks and Prewellorderings 267
34.B Ranked Classes 267
34.C Co-Analytic Ranks 268
34.D Derivatives 270
34.E Co-Analytic Ranks Associated with Borel Derivatives 272
34.F Examples 275
37. Rank Theory 281
35.A Basic Properties of Ranked Classes 281
35.B Parametrizing Bi-Analytic and Borel Sets 283
35.C Reflection Theorems 285
35.D Boundedness Properties of Ranks 288
35.E The Rank Method 290
35.F The Strategic Uniformization Theorem 291
35.G Co-Analytic Families of Closed Sets and Their Sigma-Ideals 292
35.H Borel Sets with F_{σ} and K_{σ} Sections 296
38. Scales and Uniformization 299
36.A Kappa-Souslin Sets 299
36.B Scales 299
36.C Scaled Classes and Uniformization 302
36.D The Novikov-Kondô Uniformization Theorem 304
36.E Regularity Properties of Uniformizing Functions 307
36.F Uniformizing Co-Analytic Sets with Large Sections 309
36.G Examples of Co-Analytic Scales 310
Chapter V
Projective Sets 313
39. The Projective Hierarchy 313
37.A Basic Facts 313
37.B Examples 316
40. Projective Determinacy 322
38.A The Second Level of the Projective Hierarchy 322
38.B Projective Determinacy 325
38.C Regularity Properties 326
41. The Periodicity Theorems 327
39.A Periodicity in the Projective Hierarchy 327
39.B The First Periodicity Theorem 327
39.C The Second Periodicity Theorem 336
39.D The Third Periodicity Theorem 342
42. Epilogue 346
40.A Extensions of the Projective Hierarchy 346
40.B Effective Descriptive Set Theory 346
40.C Large Cardinals 346
40.D Connections to Other Areas of Mathematics 347
Appendix A. Ordinals and Cardinals 349
Appendix B. Well-founded Relations 351
Appendix C. On Logical Notation 353
Notes and Hints 357
References 369
Symbols and Abbreviations 381
Index 387

Introduction

Descriptive set theory is the study of "definable sets" in Polish (i.e., separable completely metrizable) spaces. In this theory, sets are classified in hierarchies, according to the complexity of their definitions, and the structure of the sets in each level of these hierarchies is systematically analyzed.

In the beginning we have the Borel sets, which are those obtained from the open sets, of a given Polish space, by the operations of complementation and countable union. Their class is denoted by \mathbf{B}. This class can be further analyzed in a transfinite hierarchy of length ω_{1} ($=$ the first uncountable ordinal), the Borel hierarchy, consisting of the open, closed, F_{σ} (countable unions of closed), G_{δ} (countable intersections of open), $F_{\sigma \delta}$ (countable intersections of F_{σ}), $G_{\delta \sigma}$ (countable unions of G_{δ}), etc., sets. In modern logical notation, these classes are denoted by $\boldsymbol{\Sigma}_{\xi}^{0}, \boldsymbol{\Pi}_{\xi}^{0}$, for $1 \leq \xi<\omega_{1}$, where

$$
\begin{aligned}
\boldsymbol{\Sigma}_{1}^{0} & =\text { open, } \boldsymbol{\Pi}_{1}^{0}=\text { closed } ; \\
\boldsymbol{\Sigma}_{\xi}^{0} & =\left\{\bigcup_{n \in \mathbb{N}} A_{n}: A_{n} \text { is in } \boldsymbol{\Pi}_{\xi_{n}}^{0} \text { for } \xi_{n}<\xi\right\} ; \\
\boldsymbol{\Pi}_{\xi}^{0} & =\text { the complements of } \boldsymbol{\Sigma}_{\xi}^{0} \text { sets. }
\end{aligned}
$$

(Therefore, $\boldsymbol{\Sigma}_{2}^{0}=F_{\sigma}, \boldsymbol{\Pi}_{2}^{0}=G_{\delta}, \boldsymbol{\Sigma}_{3}^{0}=G_{\delta \sigma}, \boldsymbol{\Pi}_{3}^{0}=F_{\sigma \delta}$, etc.) Thus \mathbf{B} ramifies in the following hierarchy:
$\left.\begin{array}{ccccccc}\boldsymbol{\Sigma}_{1}^{0} & \boldsymbol{\Sigma}_{2}^{0} & & \boldsymbol{\Sigma}_{\xi}^{0} & & \boldsymbol{\Sigma}_{\eta}^{0} & \\ \boldsymbol{\Pi}_{1}^{0} & \boldsymbol{\Pi}_{2}^{0} & \cdots & & \boldsymbol{\Pi}_{\xi}^{0} & & \boldsymbol{\Pi}_{\eta}^{0}\end{array}\right]$,
where $\xi \leq \eta<\omega_{1}$, every class is contained in any class to the right of it, and

$$
\mathbf{B}=\bigcup_{\xi<\omega_{1}} \boldsymbol{\Sigma}_{\xi}^{0}=\bigcup_{\xi<\omega_{1}} \boldsymbol{\Pi}_{\xi}^{0} .
$$

Beyond the Borel sets one has next the projective sets, which are those obtained from the Borel sets by the operations of projection (or continuous image) and complementation. The class of projective sets, denoted by \mathbf{P}, ramifies in an infinite hierarchy of length ω (= the first infinite ordinal), the projective hierarchy, consisting of the analytic (A) (continuous images of Borel), co-analytic (CA) (complements of analytic), PCA (continuous images of CA), CPCA (complements of PCA), etc., sets. Again, in logical notation, we let

$$
\begin{aligned}
\boldsymbol{\Sigma}_{1}^{1} & =\text { analytic, } \boldsymbol{\Pi}_{1}^{1}=\text { co-analytic } ; \\
\boldsymbol{\Sigma}_{n+1}^{1} & =\text { all continuous images of } \boldsymbol{\Pi}_{n}^{1} \text { sets; } \\
\boldsymbol{\Pi}_{n+1}^{1} & =\text { the complements of } \boldsymbol{\Sigma}_{n+1}^{1} \text { sets; }
\end{aligned}
$$

so that in the following diagram every class is contained in any class to the right of it:

$$
\begin{array}{lllllll}
& \boldsymbol{\Sigma}_{1}^{1} & \boldsymbol{\Sigma}_{2}^{1} & & \boldsymbol{\Sigma}_{n}^{1} & \boldsymbol{\Sigma}_{n+1}^{1} & \ldots \\
\mathbf{B} & \boldsymbol{\Pi}_{1}^{1} & \boldsymbol{\Pi}_{2}^{1} & & \boldsymbol{\Pi}_{n}^{1} & \boldsymbol{\Pi}_{n+1}^{1} &
\end{array}
$$

and

$$
\mathbf{P}=\bigcup_{n} \boldsymbol{\Sigma}_{n}^{1}=\bigcup_{n} \boldsymbol{\Pi}_{n}^{1}
$$

One can of course go beyond the projective hierarchy to study transfinite extensions of it, and even more complex "definable sets" in Polish spaces, but we will restrict ourselves here to the structure theory of Borel and projective sets, which is the subject matter of classical descriptive set theory.

Descriptive set theory has been one of the main areas of research in set theory for almost a century now. Moreover, its concepts and results are being used in diverse fields of mathematics, such as mathematical logic, combinatorics, topology, real and harmonic analysis, functional analysis, measure and probability theory, potential theory, ergodic theory, operator algebras, and topological groups and their representations. The main aim of these lectures is to provide a basic introduction to classical descriptive set theory and give some idea of its connections or applications to other areas.

About This Book

These lectures are divided into five chapters. The first chapter sets up the context by providing an overview of the basic theory of Polish spaces. Many standard tools, such as the Baire category theory, are also introduced here. The second chapter deals with the theory of Borel sets. Among other things, methods of infinite games figure prominently here, a feature that continues in the later chapters. In the third chapter, the theory of analytic sets, which is briefly introduced in the second chapter, is developed in more detail. The fourth chapter is devoted to the theory of co-analytic sets and, in particular, develops the machinery associated with ranks and scales. Finally, in the fifth chapter, we provide an introduction to the theory of projective sets, including the periodicity theorems.

We view this book as providing a first basic course in classical descriptive set theory, and we have therefore confined it largely to "core material" with which mathematicians interested in the subject for its own sake or those that wish to use it in their own field should be familiar. Throughout the book, however, are pointers to the literature for topics not treated here. In addition, a brief summary at the book's end (Section 40) describes the main further directions of current research in descriptive set theory.

Descriptive set theory can be approached from many different viewpoints. Over the years, researchers in diverse areas of mathematics-logic and set theory, analysis, topology, probability theory, and others-have brought their own intuitions, concepts, terminology, and notation to the subject. We have attempted in these lectures to present a largely balanced approach, which combines many elements of each tradition.

We have also made an effort to present a wide variety of examples
and applications in order to illustrate the general concepts and results of the theory. Moreover, over 400 exercises are included, of varying degrees of difficulty. Among them are important results as well as propositions and lemmas, whose proofs seem best to be left to the reader. A section at the end of these lectures contains hints to selected exercises.

This book is essentially self-contained. The only thing it requires is familiarity, at the beginning graduate or even advanced undergraduate level, with the basics of general topology, measure theory, and functional analysis, as well as the elements of set theory, including transfinite induction and ordinals. (See, for example, H. B. Enderton [1977], P. R. Halmos [1960a] or Y. N. Moschovakis [1994].) A short review of some standard set theoretic concepts and notation that we use is given in Appendices A and B. Appendix C explains some of the basic logical notation employed throughout the text. It is recommended that the reader become familiar with the contents of these appendices before reading the book and return to them as needed later on. On occasion, especially in some examples, applications, or exercises, we discuss material, drawn from various areas of mathematics, which does not fall under the preceding basic prerequisites. In such cases, it is hoped that a reader who has not studied these concepts before will at least attempt to get some idea of what is going on and perhaps look over a standard textbook in one of these areas to learn more about them. (If this becomes impossible, this material can be safely omitted.)

Finally, given the rather informal nature of these lectures, we have not attempted to provide detailed historical or bibliographical notes and references. The reader can consult the monographs by N. N. Lusin [1972], K. Kuratowski [1966], Y. N. Moschovakis [1980], as well as the collection by C. A. Rogers et al. [1980] in that respect. The Ω-Bibliography of Mathematical Logic (G. H. Müller, ed., Vol. 5, Springer-Verlag, Berlin, 1987) also contains an extensive bibliography.

