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To Alexandra and Olympia 



Preface 

This book is based on some notes that I prepared for a class given at Cal­
tech during the academic year 1991-92, attended by both undergraduate 
and graduate students. Although these notes underwent several revisions, 
which included the addition of a new chapter (Chapter V) and of many com­
ments and references, the final form still retains the informal and somewhat 
compact style of the original version. So this book is best viewed as a set 
of lecture notes rather than as a detailed and scholarly monograph. 

I would like to thank R. Dougherty, H. Ki, X. Li, T. Linton, A. Louveau, 
J. Mycielski, F. van Engelen, and T. Zavisca for many helpful comments and 
suggestions. I am particularly grateful to A. Andretta. H. Becker, S. Solecki, 
and S. M. Srivastava for their extensive and detailed criticism as well as 
numerous corrections, which substantially improved the presentation. 

It is my pleasure to acknowledge the financial suppon of the National 
Science Foundation and the help from the Mathematic~ Department at 
Caltech while I was writing this book. In particular, I would like to thank 
J. Madow and J. Cassidy for typing the manuscript and B. Turring for 
preparing the diagrams. 

Los Angeles 
September 1994 

Alexander S. Kechris 
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Introduction 

Descriptive set theory is the study of "definable sets" in Polish (i.e., sep­
arable completely metrizahle) spaces. In this theory, sets are classified in 
hierarchies, according to the complexity of their definitions, and the struc­
ture of the sets in each level of these hierarchies is systematically analyzed. 

In the beginning we have the Borel sets, which are those obtained from 
the open sets, of a given Polish space, by the operations of complementation 
and countable union. Their class is denoted by B. This class can be further 
analyzed in a transfinite hierarchy of length WI (= the first uncountable 
ordinal), the Borel hierarchy, consisting of the open, closed, Fa (count­
able unions of closed), Go (countable intersections of open), Fab (countable 
intersections of Fo1 Gou (countable unions of Go), etc., sets. In modern 
logical notation, these classes are denoted by ~~, II~, for 1 ::; ~ < Wj, 

where 
~y = open, II? = closed; 

~~ = {U An : An is in IIt for ~n < 0: 
nEN 

II~ = the complements of ~~ sets. 

(Therefore, ~g = Fa, IIg = Go, ~~ Goa, II~ 
ramifies in the following hierarchy: 

~? ~g ~() 
1) 

Fa6, etc.) Thus B 

where ~ ::; '7 < WI, every class is contained in any class to the right of it, 
and 
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B = U ~~ = U II~. 
E<Wl E<Wl 

Beyond the Borel sets one has next the projective sets, which are those 
obtained from the Borel sets by the operations of projection (or continuous 
image) and complementation. The class of projective sets, denoted by P, 
ramifies in an infinite hierarchy of length w (= the first infinite ordinal), 
the projective hierarchy, consisting of the analytic (A) (continuous images 
of Borel), co-analytic (CA) (complements of analytic), PCA (continuous 
images of CA), CPCA (complements of PCA), etc., sets. Again, in logical 
notation, we let 

~i = analytic, IIi = co-analytic; 

~1 - all continuous images of II:, sets', ,,+1 - . 
II~+1 = the complements of ~;'+1 sets; 

so that in the following diagram every class is contained in any class to the 
right of it: 

~i ~~ ~;, ~~+l 
B 

III 
1 

III 
2 

III 
n II;, + I 

and 
P = U~; = UII;. 

n n 

One can of course go beyond the projective hierarchy to study trans­
finite extensions of it, and even more complex "definable sets" in Polish 
spaces, but we will restrict ourselves here to the structure theory of Borel 
and projective sets, which is the subject matter of classical descriptive set 
theory. 

Descriptive set theory has been one of the main areas of research in 
set theory for almost a century now. Moreover, its concepts and results are 
being used in diverse fields of mathematics, such as mathematical logic, 
combinatorics, topology, real and harmonic analysis, functional analysis, 
measure and probability theory, potential theory, ergodic theory, operator 
algebras, and topological groups and their representations. The main aim 
of these lectures is to provide a basic introduction to classical descriptive 
set theory and give some idea of its connections or applications to other 
areas. 
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These lectures are divided into five chapters. The first chapter sets up the 
context by providing an overview of the basic theory of Polish spaces. Many 
standard tools, such as the Baire category theory, are also introduced here. 
The second chapter deals with the theory of Borel sets. Among other things, 
methods of infinite games figure prominently here, a feature that continues 
in the later chapters. In the third chapter, the theory of analytic sets, which 
is briefly introduced in the second chapter, is developed in more detail. The 
fourth chapter is devoted to the theory of co-analytic sets and, in particular, 
develops the machinery associated with ranks and scales. Finally, in the 
fifth chapter, we provide an introduction to the theory of projective sets, 
including the periodicity theorems. 

We view this book as providing a first basic course in classical descrip­
tive set theory, and we have therefore confined it largely to "core material" 
with which mathematicians interested in the subject for its own sake or 
those that wish to use it in their own field should be familiar. Throughout 
the book, however, are pointers to the literature for topics not treated here. 
In addition, a brief summary at the book's end (Section 40) describes the 
main further directions of current research in descriptive set theory. 

Descriptive set theory can be approached from many different view­
points. Over the years, researchers in diverse areas of mathematics-logic 
and set theory, analysis, topology, probability theory, and others-have 
brought their own intuitions, concepts, terminology, and notation to the 
subject. We have attempted in these lectures to present a largely balanced 
approach, which combines many elements of each tradition. 

We have also made an effort to present a wide variety of examples 
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and applications ill order to illustrate tlw general concepts and results of 
the theory. Moreover, over 400 exercises are included, of varying degrees of 
difficulty. Among them are important results as well as propositions and 
lemmas, whose proofs seem best to be left to the reader. A section at the 
end of these lectures contains hints to selected exercises. 

This book is essentially self-contained. The only thing it requires is fa­
miliarity, at the beginning graduate or even advanced undergraduate leveL 
with the basics of general topology, measure theory, and functional analy­
sis, as well as the elements of set theory, including transfinite induction and 
ordinals. (See, for example, H. B. Enderton [1977], P. R. Halmos [1960a] 
or Y. N. l\Ioschovakis [1994].) A short review of some standard set theo­
retic concepts and notation that we use is given in Appendices A and B. 
Appendix C explains some of the basic logical notation employed through­
out the text. It is recommended that the reader become familiar with the 
contents of these appendices before reading the book and return to them 
as needed later on. On occasion, especially in some examples, applications, 
or exercises, we discuss material drawn from various areas of mathematics, 
which does not fall under the preceding basic prerequisites. In s11ch cases. 
it is hoped that a reader who has not studied these concepts before will at 
least attempt to get some idea of what is going on and perhaps look over a 
standard textbook in one of these areas to learn more about them. (If this 
becomes impossible, this material can be safely omitted.) 

Finally, given the rather informal nature of these lectures, we have 
not attempted to provide detailed historical or bibliographical notes and 
references. The reader call consult the monographs by N. N. Lusin [1972], 
K. Kuratowski [1966], Y. N. Moschovakis [1980]' as well as the collection 
by C. A. Rogers et al. [1980] in that respect. The n-Bibliogmphy of Mathe­
matical Logic (G. H. l\liiller, eel.. Vol. 5, Springer-Verlag, Berlin, 1987) also 
contains an extensive bibliography. 


