${\rm Graduate\ Texts\ in\ Mathematics}\quad 156$

Editorial Board J.H. Ewing F.W. Gehring P.R. Halmos

Graduate Texts in Mathematics

- 1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
- 2 OXTOBY. Measure and Category. 2nd ed.
- 3 SCHAEFFER. Topological Vector Spaces.
- 4 HILTON/STAMMBACH. A Course in Homological Algebra.
- 5 MACLANE. Categories for the Working Mathematician.
- 6 HUGHES/PIPER. Projective Planes.
- 7 SERRE. A Course in Arithmetic.
- 8 TAKEUTI/ZARING. Axiometic Set Theory.
- 9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory.
- 10 COHEN. A Course in Simple Homotopy Theory.
- 11 CONWAY. Functions of One Complex Variable. 2nd ed.
- 12 BEALS. Advanced Mathematical Analysis.
- 13 ANDERSON/FULLER. Rings and Categories of Modules. 2nd ed.
- 14 GOLUBITSKY/GUILEMIN. Stable Mappings and Their Singularities.
- 15 BERBERIAN. Lectures in Functional Analysis and Operator Theory.
- 16 WINTER. The Structure of Fields.
- 17 ROSENBLATT. Random Processes. 2nd ed.
- 18 HALMOS. Measure Theory.
- 19 HALMOS. A Hilbert Space Problem Book. 2nd ed.
- 20 HUSEMOLLER. Fibre Bundles. 3rd ed.
- 21 HUMPHREYS, Linear Algebraic Groups.22 BARNES/MACK, An Algebraic
- Introduction to Mathematical Logic.
- 23 GREUB. Linear Algebra. 4th ed.
- 24 HOLMES. Geometric Functional Analysis and Its Applications.
- 25 Hewitt/Stromberg. Real and Abstract Analysis.
- 26 MANES. Algebraic Theories.
- 27 Kelley. General Topology.
- 28 ZARISKI/SAMUEL. Commutative Algebra. Vol. I.
- 29 ZARISKI/SAMUEL. Commutative Algebra. Vol. II.
- 30 JACOBSON. Lectures in Abstract Algebra I. Basic Concepts.
- 31 JACOBSON. Lectures in Abstract Algebra II. Linear Algebra.

- 32 JACOBSON.Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.
- 33 HIRSCH. Differential Topology.
- 34 SPITZER. Principles of Random Walk. 2nd ed.
- 35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed.
- 36 Kelley/Namioka et al. Linear Topological Spaces.
- 37 Monk. Mathematical Logic.
- 38 GRAUERT/FRITZSCHE. Several Complex Variables.
- 39 ARVESON. An Invitation to C^* -Algebras
- 40 KEMENY/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed.
- 41 APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
- 42 SERRE. Linear Representations of Finite Groups.
- 43 GILLMAN/JERISON. Rings of Continuous Functions.
- 44 KENDIG. Elementary Algebraic Geometry.
- 45 LOÈVE. Probability Theory I. 4th ed.
- 46 LOÈVE. Probability Theory II. 4th ed.
- 47 MOISE. Geometric Topology in Dimensions 2 and 3.
- 48 SACHS/WU. General Relativity for Mathematicians.
- 49 GRUENBERG/WEIR. Linear Geometry. 2nd ed.
- 50 Edwards. Fermat's Last Theorem.
- 51 KLINGENBERG.A Course in Differential Geometry.
- 52 HARTSHORNE. Algebraic Geometry.
- 53 MANIN. A Course in Mathematical Logic
- 54 GRAVER/WATKINS. Combinatorics with Emphasis on the Theory of Graphs.
- 55 BROWN/PEARCY. Introduction to Operator Theory I: Elements of Functional Analysis.
- 56 MASSEY. Algebraic Topology: An Introduction.
- 57 CROWELL/FOX. Introduction to Knot Theory.

continued after index

Alexander S. Kechris

Classical Descriptive Set Theory

With 34 Illustrations

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Alexander S. Kechris
Alfred P. Sloan Laboratory of Mathematics and Physics
Mathematics 253-37
California Institute of Technology
Pasadena, CA 91125-0001

Editorial Board J.H. Ewing Department of Mathematics Indiana University Bloomington, IN 47405 USA

F.W. Gehring Department of Mathematics University of Michigan Ann Arbor, MI 48109 USA P.R. Halmos Department of Mathematics Santa Clara University Santa Clara, CA 95053 USA

Mathematics Subject Classifications (1991): 04-01, 04A15, 28A05, 54H05

Library of Congress Cataloging-in-Publication Data Kechris, A. S., 1946– Classical descriptive set theory / Alexander S. Kechris. p. cm. — (Graduate texts in mathematics ; vol. 156) Includes bibliographical references and index. ISBN-13: 978-1-4612-8692-9 e-ISBN-13: 978-1-4612-4190-4 DOI: 10.1007/978-1-4612-4190-4 1. Set theory. I. Title. II. Series: Graduate texts in mathematics ; 156. QA248.K387 1994 511.3'22- dc20 94-30471

Printed on acid-free paper.

© 1995 Springer-Verlag New York, Inc.

Softcover reprint of the hardcover 1st edition 1995

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA). except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Frederick H. Bartlett; manufacturing supervised by Jacqui Ashri. Photocomposed pages prepared from the author's T_{FX} files using Springer-Verlag's plain T_{FX} macro.

 $9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1$

To Alexandra and Olympia

Preface

This book is based on some notes that I prepared for a class given at Caltech during the academic year 1991–92, attended by both undergraduate and graduate students. Although these notes underwent several revisions, which included the addition of a new chapter (Chapter V) and of many comments and references, the final form still retains the informal and somewhat compact style of the original version. So this book is best viewed as a set of lecture notes rather than as a detailed and scholarly monograph.

I would like to thank R. Dougherty, H. Ki, X. Li, T. Linton, A. Louveau, J. Mycielski, F. van Engelen, and T. Zavisca for many helpful comments and suggestions. I am particularly grateful to A. Andretta, H. Becker, S. Solecki, and S. M. Srivastava for their extensive and detailed criticism as well as numerous corrections, which substantially improved the presentation.

It is my pleasure to acknowledge the financial support of the National Science Foundation and the help from the Mathematics Department at Caltech while I was writing this book. In particular, I would like to thank J. Madow and J. Cassidy for typing the manuscript and B. Turring for preparing the diagrams.

Los Angeles September 1994 Alexander S. Kechris

Contents

Pre	face	vii
Intr	oduction	xv
Abo	out This Book	xvii
Сн	APTER I	
Poli	ish Spaces	1
1.	Topological and Metric Spaces	1
	1.A Topological Spaces	1
	1.B Metric Spaces	2
2.	Trees	5
	2.A Basic Concepts	5
	2.B Trees and Closed Sets	7
	2.C Trees on Products	9
	2.D Leftmost Branches	9
	2.E Well-founded Trees and Ranks	10
	2.F The Well-founded Part of a Tree	11
	2.G The Kleene-Brouwer Ordering	11
3.	Polish Spaces	13
	3.A Definitions and Examples	13
	3.B Extensions of Continuous Functions and Homeomorphisms	15
	3.C Polish Subspaces of Polish Spaces	17
4.	Compact Metrizable Spaces	18
	4.A Basic Facts	18
	4.B Examples	19

x Contents

4.C A Universality Property of the Hilbert Cube	22
4.D Continuous Images of the Cantor Space	23
4.E The Space of Continuous Functions on a Compact Space	24
4.F The Hyperspace of Compact Sets	24
5. Locally Compact Spaces	29
6. Perfect Polish Spaces	31
6.A Embedding the Cantor Space in Perfect Polish Spaces	31
6.B The Cantor-Bendixson Theorem	32
6.C Cantor-Bendixson Derivatives and Ranks	33
7. Zero-dimensional Spaces	35
7. A Basic Facts	35
7.B A Topological Characterization of the Cantor Space	35
7.C A Topological Characterization of the Baire Space	36
7.D Zero-dimensional Spaces as Subspaces of the Baire Space	38
7.E Polish Spaces as Continuous Images of the Baire Space	38
7.F Closed Subsets Homeomorphic to the Baire Space	39
8. Baire Category	
8. A Meager Sets	41
0	41
8.B Baire Spaces	
8.C Choquet Games and Spaces	43
8.D Strong Choquet Games and Spaces	44
8.E A Characterization of Polish Spaces	45
8.F Sets with the Baire Property	47
8.G Localization	48
8.H The Banach-Mazur Game	51
8.I Baire Measurable Functions	52 52
8.J Category Quantifiers	53
8.K The Kuratowski-Ulam Theorem	53
8.L Some Applications	55
8.M Separate and Joint Continuity	56
9. Polish Groups	58
9.A Metrizable and Polish Groups	58
9.B Examples of Polish Groups	58
9.C Basic Facts about Baire Groups and Their Actions	60
9.D Universal Polish Groups	63
Chapter II	
Borel Sets	65
10. Measurable Spaces and Functions	65
10.A Sigma-Algebras and Their Generators	65
10.B Measurable Spaces and Functions	66
11. Borel Sets and Functions	68
11.A Borel Sets in Topological Spaces	68
11.B The Borel Hierarchy	68
11.C Borel Functions	70
12. Standard Borel Spaces	73
12.A Borel Sets and Functions in Separable Metrizable Spaces	73
12.B Standard Borel Spaces	74

	12.C The Effros Borel Space	75
	12.D An Application to Selectors	77
	12.E Further Examples	78
	12.F Standard Borel Groups	80
13.	Borel Sets as Clopen Sets	82
	13.A Turning Borel into Clopen Sets	82
	13.B Other Representations of Borel Sets	83
	13.C Turning Borel into Continuous Functions	84
14.	Analytic Sets and the Separation Theorem	85
	14.A Basic Facts about Analytic Sets	85
	14.B The Lusin Separation Theorem	87
	14.C Souslin's Theorem	87
15.	Borel Injections and Isomorphisms	89
	15.A Borel Injective Images of Borel Sets	89
	15.B The Isomorphism Theorem	90
	15.C Homomorphisms of Sigma-Algebras Induced by Point Maps	91
	15.D Some Applications to Group Actions	92
16.	Borel Sets and Baire Category	94
	16.A Borel Definability of Category Notions	94
	16.B The Vaught Transforms	95
	16.C Connections with Model Theory	96
	16.D Connections with Cohen's Forcing Method	99
17.	Borel Sets and Measures	103
	17.A General Facts on Measures	103
	17.B Borel Measures	105
	17.C Regularity and Tightness of Measures	107
	17.D Lusin's Theorem on Measurable Functions	108
	17.E The Space of Probability Borel Measures	109
	17.F The Isomorphism Theorem for Measures	116
18.	Uniformization Theorems	120
	18.A The Jankov, von Neumann Uniformization Theorem	120
	18.B "Large Section" Uniformization Results	122
	18.C "Small Section" Uniformization Results	123
10	18.D Selectors and Transversals	128
19.	Partition Theorems	129
	19.A Partitions with a Comeager or Non-meager Piece	129
	19.B A Ramsey Theorem for Polish Spaces	130
	19.C The Galvin-Prikry Theorem	132
	19.D Ramsey Sets and the Ellentuck Topology	132
90	19.E An Application to Banach Space Theory	134
20.	Borel Determinacy	137
	20.A Infinite Games	137
	20.B Determinacy of Closed Games 20.C Borel Determinacy	138
	20.D Game Quantifiers	$\begin{array}{c} 140 \\ 147 \end{array}$
21	Games People Play	147 149
<i>4</i> 1.	21.A The *-Games	149
	21.B Unfolding	149
	21.C The Banach-Mazur or **-Games	150
		101

xii Contents

	21.D The General Unfolded Banach-Mazur Games	153
	21.E Wadge Games	156
	21.F Separation Games and Hurewicz's Theorem	160
	21.G Turing Degrees	164
22.	The Borel Hierarchy	167
	22.A Universal Sets	167
	22.B The Borel versus the Wadge Hierarchy	169
	22.C Structural Properties	170
	22.D Additional Results	173
	22.E The Difference Hierarchy	175
23.	Some Examples	179
	23.A Combinatorial Examples	179
	23.B Classes of Compact Sets	181
	23.C Sequence Spaces	182
	23.D Classes of Continuous Functions	182
	23.E Uniformly Convergent Sequences	185
	23.F Some Universal Sets	185
	23.G Further Examples	188
24.	The Baire Hierarchy	190
	24.A The Baire Classes of Functions	190
	24.B Functions of Baire Class 1	192
Сн	APTER III	
Ana	alytic Sets	196
25.	Representations of Analytic Sets	196
	25.A Review	196
	25.B Analytic Sets in the Baire Space	197
	25.C The Souslin Operation	198
	25.D Wellordered Unions and Intersections of Borel Sets	201
	25.E Analytic Sets as Open Sets in Strong Choquet Spaces	202
26.	Universal and Complete Sets	205
		005

25.E Analytic Sets as Open Sets in Strong Choquet Spaces	202
Universal and Complete Sets	205
26.A Universal Analytic Sets	205
26.B Analytic Determinacy	205
26.C Complete Analytic Sets	206
26.D Classification up to Borel Isomorphism	207
Examples	209
27.A The Class of Ill-founded Trees	209
27.B Classes of Closed Sets	209
27.C Classes of Structures in Model Theory	212
27.D Isomorphism	213
27.E Some Universal Sets	214
27.F Miscellanea	215
Separation Theorems	217
28.A The Lusin Separation Theorem Revisited	217
28.B The Novikov Separation Theorem	219
28.C Borel Sets with Open or Closed Sections	220
28.D Some Special Separation Theorems	221
28.E "Hurewicz-Type" Separation Theorems	224
	 Universal and Complete Sets 26.A Universal Analytic Sets 26.B Analytic Determinacy 26.C Complete Analytic Sets 26.D Classification up to Borel Isomorphism Examples 27.A The Class of Ill-founded Trees 27.B Classes of Closed Sets 27.C Classes of Structures in Model Theory 27.D Isomorphism 27.E Some Universal Sets 27.F Miscellanea Separation Theorems 28.A The Lusin Separation Theorem Revisited 28.B The Novikov Separation Theorem 28.C Borel Sets with Open or Closed Sections 28.D Some Special Separation Theorems

a	
Contents	X111
0011001100	

29.	Regularity Properties	226
	29.A The Perfect Set Property	226
	29.B Measure, Category, and Ramsey	226
	29.C A Closure Property for the Souslin Operation	227
	29.D The Class of C -Sets	230
	29.E Analyticity of "Largeness" Conditions on Analytic Sets	230
30.	Capacities	234
	30.A The Basic Concept	234
	30.B Examples	234
	30.C The Choquet Capacitability Theorem	237
31.	Analytic Well-founded Relations	239
	31.A Bounds on Ranks of Analytic Well-founded Relations	239
	31.B The Kunen-Martin Theorem	241
Сн	APTER IV	
Co-	Analytic Sets	242
32.	Review	242
	32.A Basic Facts	242
	32.B Representations of Co-Analytic Sets	243
	32.C Regularity Properties	244
33.	Examples	245
	33.A Well-founded Trees and Wellorderings	245
	33.B Classes of Closed Sets	245
	33.C Sigma-Ideals of Compact Sets	246
	33.D Differentiable Functions	248
	33.E Everywhere Convergence	251
	33.F Parametrizing Baire Class 1 Functions	252
	33.G A Method for Proving Completeness	253
	33.H Singular Functions	254
	33.1 Topological Examples	255
	33.J Homeomorphisms of Compact Spaces	257
	33.K Classes of Separable Banach Spaces	262
	33.L Other Examples	266
34.	Co-Analytic Ranks	267
	34.A Ranks and Prewellorderings	267
	34.B Ranked Classes	267
	34.C Co-Analytic Ranks	268
	34.D Derivatives	270
	34.E Co-Analytic Ranks Associated with Borel Derivatives	272
	34.F Examples	275
35.	Rank Theory	281
	35.A Basic Properties of Ranked Classes	281
	35.B Parametrizing Bi-Analytic and Borel Sets	283
	35.C Reflection Theorems	285
	35.D Boundedness Properties of Ranks	288
	35.E The Rank Method	290
	35.F The Strategic Uniformization Theorem	291
	35.G Co-Analytic Families of Closed Sets and Their Sigma-Ideals	292

xiv Contents

36.	35.H Borel Sets with F_{σ} and K_{σ} Sections Scales and Uniformization	296 299
	36.A Kappa-Souslin Sets	299
	36.B Scales	299
	36.C Scaled Classes and Uniformization	302
	36.D The Novikov-Kondô Uniformization Theorem	304
	36.E Regularity Properties of Uniformizing Functions	307
	36.F Uniformizing Co-Analytic Sets with Large Sections	309
	36.G Examples of Co-Analytic Scales	310
Сн	APTER V	
Pro	jective Sets	313
37.	The Projective Hierarchy	313
	37.A Basic Facts	313
	37.B Examples	316
38.	Projective Determinacy	322
	38.A The Second Level of the Projective Hierarchy	322
	38.B Projective Determinacy	325
	38.C Regularity Properties	326
39.	The Periodicity Theorems	327
	39.A Periodicity in the Projective Hierarchy	327 327
	39.B The First Periodicity Theorem	336
	39.C The Second Periodicity Theorem	342
40	39.D The Third Periodicity Theorem Epilogue	342 346
40.	40.A Extensions of the Projective Hierarchy	340
	40.B Effective Descriptive Set Theory	346
	40.C Large Cardinals	346
	40.D Connections to Other Areas of Mathematics	347
Apj	pendix A. Ordinals and Cardinals	349
Ap	pendix B. Well-founded Relations	351
Ap	pendix C. On Logical Notation	353
Not	es and Hints	357
Ref	erences	369
Syn	nbols and Abbreviations	381
Ind	ex	387

Introduction

Descriptive set theory is the study of "definable sets" in **Polish** (i.e., separable completely metrizable) **spaces**. In this theory, sets are classified in hierarchies, according to the complexity of their definitions, and the structure of the sets in each level of these hierarchies is systematically analyzed.

In the beginning we have the **Borel sets**, which are those obtained from the open sets, of a given Polish space, by the operations of complementation and countable union. Their class is denoted by **B**. This class can be further analyzed in a transfinite hierarchy of length ω_1 (= the first uncountable ordinal), the **Borel hierarchy**, consisting of the open, closed, F_{σ} (countable unions of closed), G_{δ} (countable intersections of open), $F_{\sigma\delta}$ (countable intersections of F_{σ}), $G_{\delta\sigma}$ (countable unions of G_{δ}), etc., sets. In modern logical notation, these classes are denoted by Σ_{ξ}^{0} , Π_{ξ}^{0} , for $1 \leq \xi < \omega_{1}$, where

$$\Sigma_{\xi}^{0} = \text{ open, } \Pi_{1}^{0} = \text{ closed};$$

$$\Sigma_{\xi}^{0} = \{ \bigcup_{n \in \mathbb{N}} A_{n} : A_{n} \text{ is in } \Pi_{\xi_{n}}^{0} \text{ for } \xi_{n} < \xi \};$$

$$\Pi_{\ell}^{0} = \text{ the complements of } \Sigma_{\ell}^{0} \text{ sets.}$$

(Therefore, $\Sigma_2^0 = F_{\sigma}$, $\Pi_2^0 = G_{\delta}$, $\Sigma_3^0 = G_{\delta\sigma}$, $\Pi_3^0 = F_{\sigma\delta}$, etc.) Thus **B** ramifies in the following hierarchy:

where $\xi \leq \eta < \omega_1$, every class is contained in any class to the right of it, and

xvi Introduction

$$\mathbf{B} = igcup_{\xi < \omega_1} \mathbf{\Sigma}^0_{\xi} = igcup_{\xi < \omega_1} \mathbf{\Pi}^0_{\xi}.$$

Beyond the Borel sets one has next the **projective sets**, which are those obtained from the Borel sets by the operations of projection (or continuous image) and complementation. The class of projective sets, denoted by **P**, ramifies in an infinite hierarchy of length ω (= the first infinite ordinal), the **projective hierarchy**, consisting of the analytic (**A**) (continuous images of Borel), co-analytic (**CA**) (complements of analytic), **PCA** (continuous images of **CA**), **CPCA** (complements of **PCA**), etc., sets. Again, in logical notation, we let

$$\begin{split} \boldsymbol{\Sigma}_{1}^{1} &= \text{ analytic, } \boldsymbol{\Pi}_{1}^{1} &= \text{ co-analytic;} \\ \boldsymbol{\Sigma}_{n+1}^{1} &= \text{ all continuous images of } \boldsymbol{\Pi}_{n}^{1} \text{ sets;} \\ \boldsymbol{\Pi}_{n+1}^{1} &= \text{ the complements of } \boldsymbol{\Sigma}_{n+1}^{1} \text{ sets;} \end{split}$$

so that in the following diagram every class is contained in any class to the right of it:

$$\mathbf{B} \quad \begin{array}{c} \boldsymbol{\Sigma}_{1}^{1} \quad \boldsymbol{\Sigma}_{2}^{1} \\ \mathbf{B} \quad \dots \\ \boldsymbol{\Pi}_{1}^{1} \quad \boldsymbol{\Pi}_{2}^{1} \\ \mathbf{\Pi}_{1}^{1} \quad \boldsymbol{\Pi}_{2}^{1} \\ \mathbf{P} = \left| \begin{array}{c} \left| \boldsymbol{\Sigma}_{n}^{1} \right| \\ \boldsymbol{\Pi}_{n}^{1} \\ \mathbf{\Pi}_{n+1}^{1} \\ \mathbf{H}_{n+1}^{1} \\ \mathbf{H}_{n+1}$$

and

Descriptive set theory has been one of the main areas of research in set theory for almost a century now. Moreover, its concepts and results are being used in diverse fields of mathematics, such as mathematical logic, combinatorics, topology, real and harmonic analysis, functional analysis, measure and probability theory, potential theory, ergodic theory, operator algebras, and topological groups and their representations. The main aim of these lectures is to provide a basic introduction to classical descriptive set theory and give some idea of its connections or applications to other areas.

About This Book

These lectures are divided into five chapters. The first chapter sets up the context by providing an overview of the basic theory of Polish spaces. Many standard tools, such as the Baire category theory, are also introduced here. The second chapter deals with the theory of Borel sets. Among other things, methods of infinite games figure prominently here, a feature that continues in the later chapters. In the third chapter, the theory of analytic sets, which is briefly introduced in the second chapter, is developed in more detail. The fourth chapter is devoted to the theory of co-analytic sets and, in particular, develops the machinery associated with ranks and scales. Finally, in the fifth chapter, we provide an introduction to the theory of projective sets, including the periodicity theorems.

We view this book as providing a first basic course in classical descriptive set theory, and we have therefore confined it largely to "core material" with which mathematicians interested in the subject for its own sake or those that wish to use it in their own field should be familiar. Throughout the book, however, are pointers to the literature for topics not treated here. In addition, a brief summary at the book's end (Section 40) describes the main further directions of current research in descriptive set theory.

Descriptive set theory can be approached from many different viewpoints. Over the years, researchers in diverse areas of mathematics—logic and set theory, analysis, topology, probability theory, and others—have brought their own intuitions, concepts, terminology, and notation to the subject. We have attempted in these lectures to present a largely balanced approach, which combines many elements of each tradition.

We have also made an effort to present a wide variety of examples

and applications in order to illustrate the general concepts and results of the theory. Moreover, over 400 exercises are included, of varying degrees of difficulty. Among them are important results as well as propositions and lemmas, whose proofs seem best to be left to the reader. A section at the end of these lectures contains hints to selected exercises.

This book is essentially self-contained. The only thing it requires is familiarity, at the beginning graduate or even advanced undergraduate level, with the basics of general topology, measure theory, and functional analysis, as well as the elements of set theory, including transfinite induction and ordinals. (See, for example, H. B. Enderton [1977], P. R. Halmos [1960a] or Y. N. Moschovakis [1994].) A short review of some standard set theoretic concepts and notation that we use is given in Appendices A and B. Appendix C explains some of the basic logical notation employed throughout the text. It is recommended that the reader become familiar with the contents of these appendices before reading the book and return to them as needed later on. On occasion, especially in some examples, applications, or exercises, we discuss material, drawn from various areas of mathematics, which does not fall under the preceding basic prerequisites. In such cases, it is hoped that a reader who has not studied these concepts before will at least attempt to get some idea of what is going on and perhaps look over a standard textbook in one of these areas to learn more about them. (If this becomes impossible, this material can be safely omitted.)

Finally, given the rather informal nature of these lectures, we have not attempted to provide detailed historical or bibliographical notes and references. The reader can consult the monographs by N. N. Lusin [1972], K. Kuratowski [1966], Y. N. Moschovakis [1980], as well as the collection by C. A. Rogers et al. [1980] in that respect. The Ω -Bibliography of Mathematical Logic (G. H. Müller, ed., Vol. 5, Springer-Verlag, Berlin, 1987) also contains an extensive bibliography.