Contents

Foreword: MASS and REU at Penn State University	ix
Preface	xi
Chapter 1. Arithmetic of the <i>p</i> -adic Numbers	1
§1.1. From \mathbb{Q} to \mathbb{R} ; the concept of completion	2
Exercises 1–8	5
§1.2. Normed fields	6
Exercises 9–16	14
§1.3. Construction of the completion of a normed field	15
Exercises 17–19	19
§1.4. The field of <i>p</i> -adic numbers \mathbb{Q}_p	19
Exercises 20–25	26
§1.5. Arithmetical operations in \mathbb{Q}_p	27
Exercises 26–31	30
$\S1.6.$ The <i>p</i> -adic expansion of rational numbers	30
Exercises 32–34	33
§1.7. Hensel's Lemma and congruences	33
Exercises 35–44	38
§1.8. Algebraic properties of <i>p</i> -adic integers	39
	V

vi Co	ontents
§1.9. Metrics and norms on the rational numbers.	
Ostrowski's Theorem	43
Exercises 45–46	47
§1.10. A digression: what about \mathbb{Q}_g if g is not a prime?	47
Exercises 47–50	50
Chapter 2. The Topology of \mathbb{Q}_p vs. the Topology of \mathbb{R}	53
§2.1. Elementary topological properties	53
Exercises 51–53	60
§2.2. Cantor sets	60
Exercises 54–65	68
§2.3. Euclidean models of \mathbb{Z}_p	69
Exercises 66–68	73
Chapter 3. Elementary Analysis in \mathbb{Q}_p	75
§3.1. Sequences and series	75
Exercises 69–73	80
$\S3.2.$ <i>p</i> -adic power series	80
Exercises 74–78	86
3.3. Can a <i>p</i> -adic power series be analytically continued?	87
§3.4. Some elementary functions	89
Exercises 79–81	92
3.5. Further properties of <i>p</i> -adic exponential and	
logarithm	92
$\S3.6.$ Zeros of <i>p</i> -adic power series	98
Exercises 82–83	102
Chapter 4. <i>p</i> -adic Functions	103
§4.1. Locally constant functions	103
Exercises 84–87	107
§4.2. Continuous and uniformly continuous functions	108
Exercises 88–90	112
§4.3. Points of discontinuity and the Baire Category Theorem	112

Contents	vii
Exercises 91–96	115
$\S4.4.$ Differentiability of <i>p</i> -adic functions	116
§4.5. Isometries of \mathbb{Q}_p	121
Exercises 97–100	123
§4.6. Interpolation	123
Exercises 101–103	134
Answers, Hints, and Solutions for Selected Exercises	135
Bibliography	149
Index	151