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Preface 

This book is intended for readers who are quite familiar with probability 
and stochastic processes but know little or nothing about finance. It is 
written in the definition/theorem/proof style of modern mathematics and 
attempts to explain as much of the finance motivation and terminology as 
possible. 

A mathematical monograph on finance can be written today only be­
cause of two revolutions that have taken place on Wall Street in the latter 
half of the twentieth century. Both these revolutions began at universities, 
albeit in economics departments and business schools, not in departments 
of mathematics or statistics. They have led inexorably, however, to an esca­
lation in the level of mathematics (including probability, statistics, partial 
differential equations and their numerical analysis) used in finance, to a 
point where genuine research problems in the former fields are now deeply 
intertwined with the theory and practice of the latter. 

The first revolution in finance began with the 1952 publication of "Port­
folio Selection," an early version of the doctoral dissertation of Harry 
Markowitz. This publication began a shift away from the concept of try­
ing to identify the "best" stock for an investor, and towards the concept 
of trying to understand and quantify the trade-offs between risk and re­
turn inherent in an entire portfolio of stocks. The vehicle for this so-called 
mean-variance analysis of portfolios is linear regression; once this analysis 
is complete, one can then address the optimization problem of choosing 
the portfolio with the largest mean return, subject to keeping the risk (i.e., 
the variance) below a specified acceptable threshold. The implementation 
of Markowitz's ideas was aided tremendously by William Sharpe, who de­
veloped the concept of determining covariances not between every possible 
pair of stocks, but between each stock and the "market." For purposes of 
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the above optimization problem each stock could then be characterized by 
its mean rate of return (its "a") and its correlation with the market (its 
"{3"). For their pioneering work, Markowitz and Sharpe shared with Mer­
ton Miller the 1990 Nobel Prize in economics, the first ever awarded for 
work in finance. 

The portfolio-selection work of Markowitz and Sharpe introduced math­
ematics to the "black art" of investment management. With time, the 
mathematics has become more sophisticated. Thanks to Robert Merton 
and Paul Samuelson, one-period models were replaced by continuous­
time, Brownian-motion-driven models, and the quadratic utility function 
implicit in mean-variance optimization was replaced by more general in­
creasing, concave utility functions. Model-based mutual funds have taken a 
permanent seat at the table of investment opportunities offered to the pub­
lic. Perhaps more importantly, the paradigm for thinking about financial 
markets has become a mathematical model. This affects the way we now un­
derstand issues of corporate finance, taxation, exchange-rate fluctuations, 
and all manner of financial issues. 

The second revolution in finance is connected with the explosion in the 
market for derivative securities. Already in 1992, this market was esti­
mated by the Bank for International Settlements to be a $4 trillion business 
worldwide, involving every sector of the finance industry. According to this 
estimate, the size of the derivative securities market had increased eight­
fold in five years. The foundational work here was done by Fisher Black, 
Robert Merton, and Myron Scholes in the early 1970s. Black, Merton, and 
Scholes were seeking to understand the value of the option to buy one share 
of a stock at a future date and price specified in advance. This so-called 
European call-option derives its value from that of the underlying stock, 
whence the name derivative security. The basic idea of valuing a European 
call-option is to construct a hedging portfolio, i.e., a combination of shares 
from the stock on which the call is written and of shares from a money mar­
ket, so that the resulting portfolio replicates the option. At any time, the 
option should be worth exactly as much as the hedging portfolio, for other­
wise some astute trader ("arbitrageur") could make something for nothing 
by trading in the option, the stock, and the money market; such trading 
would bring the prices back into line. Based on this simple principle, called 
absence of arbitrage, Black and Scholes (1973) derived the now famous for­
mula for the value of the European call-option, which bears their name 
and which was extended by Merton (1973) in a variety of very significant 
ways. For this foundational work, Robert Merton and Myron Scholes were 
awarded the 1997 Nobel Prize in economics. 

While options and other derivative securities can be used for speculation, 
their primary appeal is to investors who want to remove some of the risk 
associated with their investments or businesses. The sellers of derivative 
securities 'are faced with the twin problems of pricing and hedging them, 
and to accomplish this, current practice is to use Brownian-motion-based 
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models of asset prices. Without such models and the analytical tractability 
that they provide, the market for derivative securities could not have grown 
to its present mammoth proportions. 

Before proceeding further in this brief description of modern finance, 
there are two myths about the mathematical theory of finance that we 
need to explode. 

The first myth is that this research is only about how to "beat the 
market." It is true that much of the portfolio optimization work growing 
out of the first revolution in finance is about how to "beat the market," 
but a substantial component is about how to understand the market for 
other purposes, such as regulation. The second revolution in finance, the 
derivative securities explosion, is not about beating the market at all. 

The second myth maintains that since the finance industry does not man­
ufacture tangible commodities, such as refrigerators or automobiles, it can 
be engaged in nothing but a zero-sum game, "robbing Peter to pay Paul." 
In fact, the role of financial institutions' in a decentralized economy is to 
facilitate the flow of capital to sectors of society engaged in production. An 
efficient finance industry will facilitate this flow at the least possible cost, 
making available to the manufacturing sector a wide variety of instruments 
for borrowing and investing. 

Consider, for example, a manufacturer who contemplates expansion of 
his production facilities and who chooses to finance this expansion by bor­
rowing capital, in effect taking a mortgage on the new facilities. The terms 
(e.g., fixed or variable interest rate, term, prepayment options, collateral­
ization) under which the manufacturer is willing to borrow money may not 
neatly match the terms under which any particular lender is willing to pro­
vide it. The finance industry should take the investments that lenders are 
willing to make, restructuring and recombining them as necessary, so as to 
provide a loan the manufacturer is willing to accept. The finance industry 
should perform this function in a wide variety of settings and manage its 
affairs so as to be exposed to minimal risk. 

Let us suppose that the manufacturer is unable to plan effectively if he 
takes out a variable-rate mortgage, and so insists on a fixed-rate mortgage. 
Imagine also that an investment bank makes the mortgage, using money 
invested with it by depositors expecting to receive payments at the current 
(variable) interest rate. The bank is obliged to make monthly payments to 
these investors; the amounts of these payments fluctuate with the prevailing 
interest rates, and may be larger or smaller than what the bank receives 
from the manufacturer. To remove the risk associated with this position, the 
bank constructs a hedge. It may, for example, choose to sell short a number 
of bonds, i.e., receive money now in exchange for a promise to deliver bonds 
that it does not presently own and will have to buy eventually. If interest 
rates rise, the b~ will have to pay its investors more than it receives on 
the loan from the manufacturer, but the cost of buying the bonds it has 
promised to deliver will fall. If the bank chooses its position carefully, its 
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additional liability to its investors will be exactly offset by the downward 
movement of bond prices, and it will thus be protected against increases 
in the interest rate. Of course, ·decreases in interest rates will cause bond 
prices to rise, and the bank should choose its hedging position so as to be 
protected against this eventuality as well. 

As one can see from this overly simplistic example, a proliferation of 
E.nancial instruments can enhance the efliciency of an economy. The bank 
in this example "synthesizes" a fixed-rate mortgage using variable-rate in­
vestments and a position in the bond market. Such synthetic securities 
are the "products" of investment banks; while no one would claim that 
every "product" of this type contributes to the well-being of the nation, 
there is no doubt that an economy that has available a large variety of 
such products has a comparative advantage over one with a more limited 
offering. The firm that "manufactures" such products can do so only if 
it has reliable models for pricing and hedging them. Current models are 
built using stochastic calculus,· are fit to the data by careful statistical 
estimation procedures, and require accurate and fast real-time numerical 
analysis. 

This book is about some of these models. It treats only a small part of 
the whole picture, leaving completely untouched the issues of estimation 
and numerical analysis. Even within the range of models used in finance, 
we have found it necessary to be selective. Our guide has been to write 
about what we know best, namely areas of research in which we have had 
some level of personal involvement. Through the inclusion of an extensive 
bibliography and of notes at the end of each chapter, we have tried to 
point the reader toward some of the topics not touched. The bibliography 
is necessarily incomplete. We apologize to those whose work should have 
been included but is not. Such omissions are unintentional, and due either 
to ignorance or oversight. 

In order to read this book one should be familiar with the material 
contained in the first three chapters of our book Brownian Motion and 
Stochastic Calculus (Springer-Verlag, New York, 1991). There are many 
other good sources for this material, but we will refer to the source we 
know best when we cite specific results. 

Here is a high-level overview of the contents of this monograph. In Chap­
ter 1 we set up the generally accepted, Brownian-motion-driven model for 
financial markets. Because the coefficient processes in this model are them­
selves stochastic process, this is nearly the most general continuous-time 
model conceivable among those in which prices move continuously. The 
model of Chapter 1 allows us to introduce notions and results about port­
folio and consumption rules, arbitrage, equivalent martingale measures, and 
attainability of contingent claims; it divides naturally into two cases, called 
complete and incomplete, respectively. 

Chapter' f2 lays out the theory of pricing and hedging contingent claims 
(the "synthetic" or "derivative" securities described above) in the context 
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of a complete market. To honor the origins of the subject and to acquaint 
the reader with some important special cases, we analyze in some detail the 
pricing and hedging of a number of different options. We have also included 
a section on "futures" contracts, derivative securities that are conceptually 
more difficult because their value is defined recursively. 

Chapter 3 takes up the problem of a single agent faced with optimal con­
sumption and investment decisions in the complete version of the market 
model in Chapter 1. Tools from stochastic calculus and partial differential 
equations of parabolic type permit a very general treatment of the asso­
ciated optimization problem. This theory can be related to Markowitz's 
mean-variance analysis and is ostensibly about how to "beat the market," 
although another important use for it is as a first step toward understand­
ing how markets operate. Its latter use is predicated on the principle that 
a good model of individual behavior is to postulate that individuals act in 
their own best interest. 

Chapter 4 carries the notions and results of Chapter 3 to their logical 
conclusion. In particular, it is assumed that there are several individuals 
in the economy, each behaving as described in Chapter 3; through the 
law of supply and demand, their collective actions determine the so-called 
equilibrium prices of securities in the market. Characterization of this equi­
librium permits the study of questions about the effect of interventions in 
the market. 

In Chapter 5 we turn to the more difficult issue of pricing and hedg­
ing contingent claims in markets with incompleteness or other constraints 
on individual investors' portfolio choices. An approach based on "fictitious 
completion" for such a market, coupled with notions and results from con­
vex analysis and duality theory, permits again a very general solution to 
the hedging problem. 

Finally, Chapter 6 uses the approach developed in Chapter 5 to treat 
the optimafconsumption/investment problem for such incomplete or con­
strained markets, and for markets with different interest rates for borrowing 
and investing. 

Note to the Reader 

We use a hierarchical numbering system for equations and statements. 
The k-th equation in Section j of Chapter i is labeled (j.k) at the place 
where it occurs and is cited as (j.k) within Chapter i, but as (i.j.k) outside 
Chapter i. A definition, theorem, lemma, corollary, remark, or exercise is 
a "statement," and the k-th statement in Section j of Chapter i is labeled 
j.k Statement at tl).e place where it occurs, and is cited as Statement j.k 
within Chapter i but as Statement i.j.k outside Chapter i. 
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