

Probability and its Applications

A Series of the Applied Probability Trust

Editors: J. Gani, C.C. Heyde, T.G. Kurtz

Springer

New York

Berlin

Heidelberg

Barcelona

Budapest

Hong Kong

London

Milan

Paris

Santa Clara

Singapore

Tokyo

Probability and its Applications

Anderson: Continuous-Time Markov Chains.

Azencott/Dacunha-Castelle: Series of Irregular Observations.

Bass: Diffusions and Elliptic Operators.

Bass: Probabilistic Techniques in Analysis.

Choi: ARMA Model Identification.

Galambos/Simonelli: Bonferroni-type Inequalities with Applications.

Gani (Editor): The Craft of Probabilistic Modelling.

Grandell: Aspects of Risk Theory.

Gut: Stopped Random Walks.

Guyon: Random Fields on a Network.

Kallenberg: Foundations of Modern Probability.

Last/Brandt: Marked Point Processes on the Real Line.

Leadbetter/Lindgren/Rootzén: Extremes and Related Properties of Random Sequences and Processes.

Nualart: The Malliavin Calculus and Related Topics.

Resnick: Extreme Values, Regular Variation and Point Processes.

Shedler: Regeneration and Networks of Queues.

Todorovic: An Introduction to Stochastic Processes and Their Applications.

Olav Kallenberg

Foundations of Modern Probability

Springer

Olav Kallenberg
Department of Mathematics
Auburn University
Auburn University, AL 36849
USA

Series Editors

J. Gani
Stochastic Analysis
Group, CMA
Australian National
University
Canberra ACT 0200
Australia

C.C. Heyde
Stochastic Analysis
Group, CMA
Australian National
University
Canberra ACT 0200
Australia

T.G. Kurtz
Department of
Mathematics
University of Wisconsin
480 Lincoln Drive
Madison, WI 53706
USA

Library of Congress Cataloging-in-Publication Data
Kallenberg, Olav.

Foundations of modern probability / Olav Kallenberg.

p. cm. — (Probability and its applications)

Includes bibliographical references (p. —) and index.

ISBN 0-387-94957-7 (hardcover : alk. paper)

1. Probabilities. I. Title. II. Series: Springer series in
statistics. Probability and its applications.

QA273.K285 1997

519.2—dc21

97-5787

© 1997 by the Applied Probability Trust.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Preface

Some thirty years ago it was still possible, as Loève so ably demonstrated, to write a single book in probability theory containing practically everything worth knowing in the subject. The subsequent development has been explosive, and today a corresponding comprehensive coverage would require a whole library. Researchers and graduate students alike seem compelled to a rather extreme degree of specialization. As a result, the subject is threatened by disintegration into dozens or hundreds of subfields.

At the same time the interaction between the areas is livelier than ever, and there is a steadily growing core of key results and techniques that every probabilist needs to know, if only to read the literature in his or her own field. Thus, it seems essential that we all have at least a general overview of the whole area, and we should do what we can to keep the subject together. The present volume is an earnest attempt in that direction.

My original aim was to write a book about “everything.” Various space and time constraints forced me to accept more modest and realistic goals for the project. Thus, “foundations” had to be understood in the narrower sense of the early 1970s, and there was no room for some of the more recent developments. I especially regret the omission of topics such as large deviations, Gibbs and Palm measures, interacting particle systems, stochastic differential geometry, Malliavin calculus, SPDEs, measure-valued diffusions, and branching and superprocesses. Clearly plenty of fundamental and intriguing material remains for a possible second volume.

Even with my more limited, revised ambitions, I had to be extremely selective in the choice of material. More importantly, it was necessary to look for the most economical approach to every result I did decide to include. In the latter respect, I was surprised to see how much could actually be done to simplify and streamline proofs, often handed down through generations of textbook writers. My general preference has been for results conveying some new idea or relationship, whereas many propositions of a more technical nature have been omitted. In the same vein, I have avoided technical or computational proofs that give little insight into the proven results. This conforms with my conviction that the logical structure is what matters most in mathematics, even when applications is the ultimate goal.

Though the book is primarily intended as a general reference, it should also be useful for graduate and seminar courses on different levels, ranging from elementary to advanced. Thus, a first-year graduate course in measure-theoretic probability could be based on the first ten or so chapters, while the rest of the book will readily provide material for more advanced courses on various topics. Though the treatment is formally self-contained, as far as measure theory and probability are concerned, the text is intended for a rather sophisticated reader with at least some rudimentary knowledge of subjects like topology, functional analysis, and complex variables.

My exposition is based on experiences from the numerous graduate and seminar courses I have been privileged to teach in Sweden and in the United States, ever since I was a graduate student myself. Over the years I have developed a personal approach to almost every topic, and even experts might find something of interest. Thus, many proofs may be new, and every chapter contains results that are not available in the standard textbook literature. It is my sincere hope that the book will convey some of the excitement I still feel for the subject, which is without a doubt (even apart from its utter usefulness) one of the richest and most beautiful areas of modern mathematics.

Notes and Acknowledgments: My first thanks are due to my numerous Swedish teachers, and especially to Peter Jagers, whose 1971 seminar opened my eyes to modern probability. The idea of this book was raised a few years later when the analysts at Gothenburg asked me to give a short lecture course on “probability for mathematicians.” Although I objected to the title, the lectures were promptly delivered, and I became convinced of the project’s feasibility. For many years afterward I had a faithful and enthusiastic audience in numerous courses on stochastic calculus, SDEs, and Markov processes. I am grateful for that learning opportunity and for the feedback and encouragement I received from colleagues and graduate students.

Inevitably I have benefited immensely from the heritage of countless authors, many of whom are not even listed in the bibliography. I have further been fortunate to know many prominent probabilists of our time, who have often inspired me through their scholarship and personal example. Two people, Klaus Matthes and Gopi Kallianpur, stand out as particularly important influences in connection with my numerous visits to Berlin and Chapel Hill, respectively.

The great Kai Lai Chung, my mentor and friend from recent years, offered penetrating comments on all aspects of the work: linguistic, historical, and mathematical. My colleague Ming Liao, always a stimulating partner for discussions, was kind enough to check my material on potential theory. Early versions of the manuscript were tested on several groups of graduate students, and Kamesh Casukhela, Davorin Dujmovic, and Hussain Talibi in particular were helpful in spotting misprints. Ulrich Albrecht and Ed Slaminka offered generous help with software problems. I am further grateful to John Kimmel, Karina Mikhli, and the Springer production team for their patience with my last-minute revisions and their truly professional handling of the project.

My greatest thanks go to my family, who is my constant source of happiness and inspiration. Without their love, encouragement, and understanding, this work would not have been possible.

*Olav Kallenberg
May 1997*

Contents

1. Elements of Measure Theory	1
<i>σ-fields and monotone classes</i>	
<i>measurable functions</i>	
<i>measures and integration</i>	
<i>monotone and dominated convergence</i>	
<i>transformation of integrals</i>	
<i>product measures and Fubini's theorem</i>	
<i>L^p-spaces and projection</i>	
<i>measure spaces and kernels</i>	
2. Processes, Distributions, and Independence	22
<i>random elements and processes</i>	
<i>distributions and expectation</i>	
<i>independence</i>	
<i>zero-one laws</i>	
<i>Borel–Cantelli lemma</i>	
<i>Bernoulli sequences and existence</i>	
<i>moments and continuity of paths</i>	
3. Random Sequences, Series, and Averages	39
<i>convergence in probability and in L^p</i>	
<i>uniform integrability and tightness</i>	
<i>convergence in distribution</i>	
<i>convergence of random series</i>	
<i>strong laws of large numbers</i>	
<i>Portmanteau theorem</i>	
<i>continuous mapping and approximation</i>	
<i>coupling and measurability</i>	
4. Characteristic Functions and Classical Limit Theorems	60
<i>uniqueness and continuity theorem</i>	
<i>Poisson convergence</i>	
<i>positive and symmetric terms</i>	
<i>Lindeberg's condition</i>	
<i>general Gaussian convergence</i>	
<i>weak laws of large numbers</i>	
<i>domain of Gaussian attraction</i>	
<i>vague and weak compactness</i>	
5. Conditioning and Disintegration	80
<i>conditional expectations and probabilities</i>	
<i>regular conditional distributions</i>	

disintegration theorem
conditional independence
transfer and coupling
Daniell–Kolmogorov theorem
extension by conditioning

6. Martingales and Optional Times

96

filtrations and optional times
random time-change
martingale property
optional stopping and sampling
maximum and upcrossing inequalities
martingale convergence, regularity, and closure
limits of conditional expectations
regularization of submartingales

7. Markov Processes and Discrete-Time Chains

117

Markov property and transition kernels
finite-dimensional distributions and existence
space homogeneity and independence of increments
strong Markov property and excursions
invariant distributions and stationarity
recurrence and transience
ergodic behavior of irreducible chains
mean recurrence times

8. Random Walks and Renewal Theory

136

recurrence and transience
dependence on dimension
general recurrence criteria
symmetry and duality
Wiener–Hopf factorization
ladder time and height distribution
stationary renewal process
renewal theorem

9. Stationary Processes and Ergodic Theory

156

stationarity, invariance, and ergodicity
mean and a.s. ergodic theorem
continuous time and higher dimensions
ergodic decomposition
subadditive ergodic theorem
products of random matrices
exchangeable sequences and processes
predictable sampling

10. Poisson and Pure Jump-Type Markov Processes	176
<i>existence and characterizations of Poisson processes</i>	
<i>Cox processes, randomization and thinning</i>	
<i>one-dimensional uniqueness criteria</i>	
<i>Markov transition and rate kernels</i>	
<i>embedded Markov chains and explosion</i>	
<i>compound and pseudo-Poisson processes</i>	
<i>Kolmogorov's backward equation</i>	
<i>ergodic behavior of irreducible chains</i>	
11. Gaussian Processes and Brownian Motion	199
<i>symmetries of Gaussian distribution</i>	
<i>existence and path properties of Brownian motion</i>	
<i>strong Markov and reflection properties</i>	
<i>arcsine and uniform laws</i>	
<i>law of the iterated logarithm</i>	
<i>Wiener integrals and isonormal Gaussian processes</i>	
<i>multiple Wiener–Itô integrals</i>	
<i>chaos expansion of Brownian functionals</i>	
12. Skorohod Embedding and Invariance Principles	220
<i>embedding of random variables</i>	
<i>approximation of random walks</i>	
<i>functional central limit theorem</i>	
<i>law of the iterated logarithm</i>	
<i>arcsine laws</i>	
<i>approximation of renewal processes</i>	
<i>empirical distribution functions</i>	
<i>embedding and approximation of martingales</i>	
13. Independent Increments and Infinite Divisibility	234
<i>regularity and jump structure</i>	
<i>Lévy representation</i>	
<i>independent increments and infinite divisibility</i>	
<i>stable processes</i>	
<i>characteristics and convergence criteria</i>	
<i>approximation of Lévy processes and random walks</i>	
<i>limit theorems for null arrays</i>	
<i>convergence of extremes</i>	
14. Convergence of Random Processes, Measures, and Sets	255
<i>relative compactness and tightness</i>	
<i>uniform topology on $C(K, S)$</i>	
<i>Skorohod's J_1-topology</i>	

*equicontinuity and tightness
 convergence of random measures
 superposition and thinning
 exchangeable sequences and processes
 simple point processes and random closed sets*

15. Stochastic Integrals and Quadratic Variation	275
---	-----

*continuous local martingales and semimartingales
 quadratic variation and covariation
 existence and basic properties of the integral
 integration by parts and Itô's formula
 Fisk–Stratonovich integral
 approximation and uniqueness
 random time-change
 dependence on parameter*

16. Continuous Martingales and Brownian Motion	296
---	-----

*martingale characterization of Brownian motion
 random time-change of martingales
 isotropic local martingales
 integral representations of martingales
 iterated and multiple integrals
 change of measure and Girsanov's theorem
 Cameron–Martin theorem
 Wald's identity and Novikov's condition*

17. Feller Processes and Semigroups	313
--	-----

*semigroups, resolvents, and generators
 closure and core
 Hille–Yosida theorem
 existence and regularization
 strong Markov property
 characteristic operator
 diffusions and elliptic operators
 convergence and approximation*

18. Stochastic Differential Equations and Martingale Problems	335
--	-----

*linear equations and Ornstein–Uhlenbeck processes
 strong existence, uniqueness, and nonexplosion criteria
 weak solutions and local martingale problems
 well-posedness and measurability
 pathwise uniqueness and functional solution
 weak existence and continuity*

<i>transformations of SDEs</i>	
<i>strong Markov and Feller properties</i>	
19. Local Time, Excursions, and Additive Functionals	350
<i>Tanaka's formula and semimartingale local time</i>	
<i>occupation density, continuity and approximation</i>	
<i>regenerative sets and processes</i>	
<i>excursion local time and Poisson process</i>	
<i>Ray–Knight theorem</i>	
<i>excessive functions and additive functionals</i>	
<i>local time at regular point</i>	
<i>additive functionals of Brownian motion</i>	
20. One-Dimensional SDEs and Diffusions	371
<i>weak existence and uniqueness</i>	
<i>pathwise uniqueness and comparison</i>	
<i>scale function and speed measure</i>	
<i>time-change representation</i>	
<i>boundary classification</i>	
<i>entrance boundaries and Feller properties</i>	
<i>ratio ergodic theorem</i>	
<i>recurrence and ergodicity</i>	
21. PDE-Connections and Potential Theory	390
<i>backward equation and Feynman–Kac formula</i>	
<i>uniqueness for SDEs from existence for PDEs</i>	
<i>harmonic functions and Dirichlet's problem</i>	
<i>Green functions as occupation densities</i>	
<i>sweeping and equilibrium problems</i>	
<i>dependence on conductor and domain</i>	
<i>time reversal</i>	
<i>capacities and random sets</i>	
22. Predictability, Compensation, and Excessive Functions	409
<i>accessible and predictable times</i>	
<i>natural and predictable processes</i>	
<i>Doob–Meyer decomposition</i>	
<i>quasi-left-continuity</i>	
<i>compensation of random measures</i>	
<i>excessive and superharmonic functions</i>	
<i>additive functionals as compensators</i>	
<i>Riesz decomposition</i>	

23. Semimartingales and General Stochastic Integration	433
<i>predictable covariation and L^2-integral</i>	
<i>semimartingale integral and covariation</i>	
<i>general substitution rule</i>	
<i>Doléans' exponential and change of measure</i>	
<i>norm and exponential inequalities</i>	
<i>martingale integral</i>	
<i>decomposition of semimartingales</i>	
<i>quasi-martingales and stochastic integrators</i>	
Appendices	455
A1. Hard Results in Measure Theory	
A2. Some Special Spaces	
Historical and Bibliographical Notes	464
Bibliography	486
Indices	509
<i>Authors</i>	
<i>Terms and Topics</i>	
<i>Symbols</i>	