Palle E.T. Jorgensen

Analysis and Probability Wavelets, Signals, Fractals

With graphics by Brian Treadway 58 figures and illustrations

Springer

Palle E.T. Jorgensen
Mathematics Department
The University of Iowa
Iowa City, IA 52242
USA
jorgen@math.uiowa.edu

Editorial Board
S. Axler

Mathematics Department
San Francisco State University
San Francisco, CA 94132
USA
axler@sfsu.edu

K.A. Ribet
Mathematics Department
University of California, Berkeley
Berkeley, CA 94720-3840
USA
ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 41A15, 42C20, 42A16, 42A65, 43A65, 46L55, 47C15, 60J15, 94A11

Library of Congress Control Number: 2006921447
ISBN-10: 0-387-29519-4 e-ISBN: 0-387-33082-8
ISBN-13: 978-0-387-29519-0

Printed on acid-free paper.
©2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321
springer.com

Contents

Preface vii
Getting started xv
An apology xVGlossary: function, random variable, signal, state, sequence (incl. vector-valued), random walk, time-series, measurement, nested subspaces,refinement, multiresolution, scales of visual resolutions, operator,process, black box, observable (if selfadjoint), Fourier dual pair,generating function, time/frequency, P / Q, convolution, filter, smearing,decomposition (e.g., Fourier coefficients in a Fourier expansion), analysis,frequency components, integrate (e.g., inverse Fourier transform),reconstruct, synthesis, superposition, subspace, resolution, (signals in a)frequency band, Cuntz relations, perfect reconstruction from subbands,subband decomposition, inner product, correlation, transition probability,probability of transition from one state to another, $f_{\text {out }}=T f_{\text {in }}$,input/output, transformation of states, fractal, conditional expectation,martingale, data mining (A translation guide!)xvii
Multiresolutions xxvi
Prerequisites and cross-audience xxvii
Aim and scope xxviii
Self-similarity xxix
New issues, new tools xxx
List of names and discoveries xxx
General theory xxxiv
A word about the graphics and the illustrations xxxiv
Special features of the book xxxv
Exercises: Overview xxxvi
Figures. Read Me! xxxix
Acknowledgments xliii
1 Introduction: Measures on path space 1
Prerequisites 1
Prelude 1
1.1 Wavelets 2
1.2 Path space 6
1.3 Multiresolutions 9
1.4 Sampling 17
1.5 A convergence theorem for infinite products 18
1.6 A brief outline 21
1.7 From wavelets to fractals 22
Exercises 27
History 33
References and remarks 35
2 Transition probabilities: Random walk 39
Prerequisites 39
Prelude 39
2.1 Standing assumptions 40
2.2 An example 41
2.3 Some definitions: The Ruelle operator, harmonic functions, cocycles 43
2.4 Existence of the measures P_{x} 43
2.5 Kolmogorov's consistency condition 46
2.6 The probability space Ω 47
2.7 A boundary representation for harmonic functions 48
2.8 Invariant measures 52
Exercises 54
References and remarks 57
$3 \quad \mathbb{N}_{0}$ vs. \mathbb{Z} 59
Prerequisites 59
Prelude 59
3.1 Terminology 60
3.2 The unit interval 62
3.3 A sufficient condition for $P_{x}(\mathbb{Z})=1$ 64
Exercises 66
References and remarks 67
4 A case study: Duality for Cantor sets 69
Prerequisites 69
Prelude 69
4.1 Affine iterated function systems: The general case 70
4.2 The quarter Cantor set: The example $W(x)=\cos ^{2}(2 \pi x)$ 72
4.3 The conjugate Cantor set, and a special harmonic function 76
4.4 A sufficient condition for $P_{x}\left(\mathbb{N}_{0}\right)=1$ 78
Conclusions 79
Exercises 79
References and remarks 80
5 Infinite products 83
Prerequisites 83
Prelude 83
5.1 Riesz products 84
5.2 Random products 84
5.3 The general case 85
5.4 A uniqueness theorem 86
5.5 Wavelets revisited 91
Exercises 93
References and remarks 97
6 The minimal eigenfunction 99
Prerequisites 99
Prelude 99
6.1 A general construction of $h_{\text {min }}$ 100
6.2 A closed expression for $h_{\min }$ 102
Exercises 106
References and remarks 107
7 Generalizations and applications 109
Prerequisites 109
Prelude 109
7.1 Translations and the spectral theorem 110
7.2 Multiwavelets and generalized multiresolution analysis (GMRA) 114
7.3 Operator-coefficients 114
7.4 Operator-valued measures 115
7.5 Wavelet packets 122
7.6 Representations of the Cuntz algebra \mathcal{O}_{2} 131
7.7 Representations of the algebra of the canonical anticommutation relations (CARs) 138
Exercises 141
References and remarks 151
8 Pyramids and operators 157
Prerequisites 157
Prelude 157
8.1 Why pyramids 158
8.2 Dyadic wavelet packets 159
8.3 Measures and decompositions 166
8.4 Multiresolutions and tensor products 168
Exercises 173
References and remarks 176
9 Pairs of representations of the Cuntz algebras \mathcal{O}_{n}, and their application to multiresolutions 179
Prerequisites 179
Prelude 179
9.1 Factorization of unitary operators in Hilbert space 180
9.2 Generalized multiresolutions 181
9.3 Permutation of bases in Hilbert space 182
9.4 Tilings 185
9.5 Applications to wavelets 190
9.6 An application to fractals 194
9.7 Phase modulation 198
Exercises 199
References and remarks 204
Appendices: Polyphase matrices and the operator algebra \mathcal{O}_{N} 205
Prerequisites 205
Prelude 205
Appendix A: Signals and filters 206
Appendix B: Hilbert space and systems of operators 210
Appendix C: A tale of two Hilbert spaces 212
Table C.1: Operations on two Hilbert spaces: The correspondence principle. 213
Appendix D: Signal processing, matrices, and programming diagrams 218
References and remarks: Systems theory 221
Afterword 223
Comments on signal/image processing terminology 223
Introduction 223
JPEG 2000 vs. GIF 225
JPEG 2000 225
GIF 226
Grayscale 227
Quadrature-mirror filter 227
What is a frame? 228
To the mathematics student 228
To an engineer 229
Alias (aliasing) 229
Engineering 229
Mathematics 229
Computational mathematics 230
Epigraphs 233
References 237
Symbols 251
Index 259

