Palle E.T. Jorgensen

Analysis and Probability Wavelets, Signals, Fractals

With graphics by Brian Treadway 58 figures and illustrations

Palle E.T. Jorgensen Mathematics Department The University of Iowa Iowa City, IA 52242 USA jorgen@math.uiowa.edu

Editorial Board S. Axler Mathematics Department San Francisco State University San Francisco, CA 94132 USA axler@sfsu.edu

K.A. Ribet Mathematics Department University of California, Berkeley Berkeley, CA 94720-3840 USA ribet@math.berkeley.edu

Mathematics Subject Classification (2000): 41A15, 42C20, 42A16, 42A65, 43A65, 46L55, 47C15, 60J15, 94A11

Library of Congress Control Number: 2006921447

ISBN-10: 0-387-29519-4 e-ISBN: 0-387-33082-8 ISBN-13: 978-0-387-29519-0

Printed on acid-free paper.

©2006 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com

Contents

Preface	vii
Getting started	xv
An apology	XV
Glossary: function, random variable, signal, state, sequence (incl. vector-	
valued), random walk, time-series, measurement, nested subspaces,	
refinement, multiresolution, scales of visual resolutions, operator,	
process, black box, observable (if selfadjoint), Fourier dual pair,	
generating function, time/frequency, P/Q , convolution, filter, smearing,	
decomposition (e.g., Fourier coefficients in a Fourier expansion), analysis,	
frequency components, integrate (e.g., inverse Fourier transform),	
reconstruct, synthesis, superposition, subspace, resolution, (signals in a)	
frequency band, Cuntz relations, perfect reconstruction from subbands,	
subband decomposition, inner product, correlation, transition probability,	
probability of transition from one state to another, $f_{out} = T f_{in}$,	
input/output, transformation of states, fractal, conditional expectation,	
martingale, data mining (A translation guide!)	xvii
Multiresolutions	xxvi
Prerequisites and cross-audience	xxvii
Aim and scope	xxviii
Self-similarity	xxix
New issues, new tools	XXX
List of names and discoveries	XXX
General theory	xxxiv
A word about the graphics and the illustrations	xxxiv
Special features of the book	XXXV
Exercises: Overview	xxxvi
Figures. Read Me!	xxxix

Ack	nowledgments	xliii
1	Introduction: Measures on path space	1
	Prerequisites	1
	Prelude	1
	1.1 Wavelets	2
	1.2 Path space	6
	1.3 Multiresolutions	9
	1.4 Sampling	17
	1.5 A convergence theorem for infinite products	18
	1.6 A brief outline	21
	1.7 From wavelets to fractals	22
	Exercises	27
	History	33
	References and remarks	35
2	Transition probabilities: Random walk	39
	Prerequisites	39
	Prelude	39
	2.1 Standing assumptions	40
	2.2 An example	41
	2.3 Some definitions: The Ruelle operator, harmonic functions, cocycles	43
	2.4 Existence of the measures P_x	43
	2.5 Kolmogorov's consistency condition	46
	2.6 The probability space Ω	47
	2.7 A boundary representation for harmonic functions	48
	2.8 Invariant measures	52
	Exercises	54
	References and remarks	57
3	\mathbb{N}_0 vs. \mathbb{Z}	59
	Prerequisites	59
	Prelude	59
	3.1 Terminology	60
	3.2 The unit interval	62
	3.3 A sufficient condition for $P_x(\mathbb{Z}) = 1$	64
	Exercises	66
	References and remarks	67
4	A case study: Duality for Cantor sets	69
	Prerequisites	69
	Prelude	69

			-
	4.1	Affine iterated function systems: The general case	70
	4.2	The quarter Cantor set: The example $W(x) = \cos^2(2\pi x)$	72
	4.3	The conjugate Cantor set, and a special harmonic function	76
	4.4	A sufficient condition for P_x (\mathbb{N}_0) = 1	78
	Con	clusions	79
	Exe	rcises	79
	Refe	erences and remarks	80
5	Infi	nite products	83
	Prer	equisites	83
	Prel	ude	83
	5.1	Riesz products	84
	5.2	Random products	84
	5.3	The general case	85
	5.4	A uniqueness theorem	86
	5.5	Wavelets revisited	91
	Exe	cises	93
	Refe	erences and remarks	97
6	The	minimal eigenfunction	99
	Prer	equisites	99
	Prel	ude	99
	6.1	A general construction of h_{\min}	100
	6.2	A closed expression for h_{\min}	102
	Exer	reises	106
	Refe	erences and remarks	107
7	Gen	eralizations and applications	109
	Prer	equisites	109
	Prel	ude	109
	7.1	Translations and the spectral theorem	110
	7.2	Multiwavelets and generalized multiresolution analysis (GMRA)	114
	7.3	Operator-coefficients	114
	7.4	Operator-valued measures	115
	7.5	Wavelet packets	122
	7.6	Representations of the Cuntz algebra \mathcal{O}_2	131
	7.7	Representations of the algebra of the canonical anticommutation	
		relations (CARs)	138
	Exe	rcises	141
	Refe	erences and remarks	151

8	Pyramids and operators	157
	Prerequisites	157
	Prelude	157
	8.1 Why pyramids	158
	8.2 Dvadic wavelet packets	159
	8.3 Measures and decompositions	166
	8.4 Multiresolutions and tensor products	168
	Exercises	173
	References and remarks	176
9	Pairs of representations of the Cuntz algebras \mathcal{O}_n , and their	
	application to multiresolutions	179
	Prerequisites	179
	Prelude	179
	9.1 Factorization of unitary operators in Hilbert space	180
	9.2 Generalized multiresolutions	181
	9.3 Permutation of bases in Hilbert space	182
	9.4 Tilings	185
	9.5 Applications to wavelets	190
	9.6 An application to fractals	194
	9.7 Phase modulation	198
	Exercises	199
	References and remarks	204
Ann	rendices: Polynhase matrices and the operator algebra $\mathcal{O}_{\mathcal{M}}$	205
Abb	Presenuicites	205
	Prelude	205
	Annendix A: Signals and filters	205
	Annendix R: Hilbert space and systems of operators	200
	Annendix C: A tale of two Hilbert spaces	210
	Table C 1: Operations on two Hilbert spaces: The correspondence	212
	nrinciple	213
	Annendix D: Signal processing matrices and programming diagrams	213
	References and remarks: Systems theory	210
Afte	erword	223
	Comments on signal/image processing terminology	223
	Introduction	223
	JPEG 2000 vs. GIF	225
	JPEG 2000	225
	GIF	226
	Grayscale	227

Quadrature-mirror filter	227
What is a <i>frame</i> ?	228
To the mathematics student	228
To an engineer	229
Alias (aliasing)	229
Engineering	229
Mathematics	229
Computational mathematics	230
Epigraphs	233
References	237
Symbols	251
Index	259

Drawing by the author, next page: Wavelet algorithms are good for vast sets of numbers. An engineering friend described the old approach to data mining as "Just drop a computer down onto a gigantic set of unstructured numbers!" (data mining: see Section 6.2, pp. 102–105, and the Glossary, pp. xxiv–xxv).