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Preface 

The famous problems of squaring the circle, doubling the cube and 
trisecting an angle captured the imagination of both professional and 
amateur mathematicians for over two thousand years. Despite the 
enormous effort and ingenious attempts by these men and women, the 
problems would not yield to purely geometrical methods. It was only 
the development of abstract algebra in the nineteenth century which 
enabled mathematicians to arrive at the surprising conclusion that 
these constructions are not possible. 

In this book we develop enough abstract algebra to prove that 
these constructions are impossible. Our approach introduces all the 
relevant concepts about fields in a way which is more concrete than 
usual and which avoids the use of quotient structures (and even of 
the Euclidean algorithm for finding the greatest common divisor of 
two polynomials). Having the geometrical questions as a specific goal 
provides motivation for the introduction of the algebraic concepts and 
we have found that students respond very favourably. 

We have used this text to teach second-year students at La Trobe 
University over a period of many years, each time refining the material 
in the light of student performance. 

The text is pitched at a level suitable for students who have already 
taken a course in linear algebra, including the ideas of a vector space 
over a field, linear independence, basis and dimension. The treatment, 
in such a course, of fields and vector spaces as algebraic objects should 
provide an adequate background for the study of this book. Hence 
the book is suitable for Junior/Senior courses in North America and 
second-year courses in Australia. 

Chapters 1 to 6, which develop the link between geometry and 
algebra, are the core of this book. These chapters contain a complete 
solution to the three famous problems, except for proving that 7r is 
;j, transcendental number (which is needed to complete the proof of 
the impossibility of squaring the circle). In Chapter 7 we give a self
contained proof that 7r is transcendental. Chapter 8 contains material· 
about fields which is closely related t.o the topics in Chapters 2- 4, 



VI Famous Impossibilities 

although it is not required in the proof of the impossibility of the 
three constructions. The short concluding Chapter 9 describes some 
other areas of mathematics in which algebraic machinery can be used 
to prove impossibilities. 

We expect that any course based on this book will include all of 
Chapters 1 - 6 and (ideally) at least passing reference to Chapter 9. 
We have often taught such a course which we cover in a term (about 
twenty hours). We find it essential for the course to be paced in a way 
that allows time for students to do a substantial number of problems 
for themselves. Different semester length (or longer) courses including 
topics from Chapters 7 and 8 are possible. The three natural parts of 
these are 

(1) Sections 7.1 and 7.2 (transcendence of e), 

(2) Sections 7.3 to 7.6 (transcendence of 7r), 
(3) Chapter 8. 

These are independent except, of course, that (2) depends on (1) . 
Possible extensions to the basic course are to include one, two or all 
of these. While most treatments of the transcendence of 7r require 
familiarity with the theory of functions of a complex variable and 
complex integrals, ours in Chapter 7 is accessible to students who 
have completed the usual introductory real calculus course (first-year 
in Australia and Freshman/Sophomore in North America) . However 
instructors should note that the arguments in Sections 7.3 to 7.6 are 
more difficult and demanding than those in the rest of the book. 

Problems are given at the end of each section (rather than collected 
at the end of the chapter). Some of these are computational and others 
require students to give simple proofs. 

Each chapter contains additional reading suit.able for students and 
instructors. \Ve hope that the text itself will encourage students to do 
further reading on some of the topics covered. 

As in many books, exercises marked with an asterisk'" are a good 
bit harder than the others. We believe it is important to identify 
clearly the end of each proof and we use the symbol - for this purpose. 

We have found that students often lack the mathematical maturity 
required to write or understand simple proofs. It. helps if students write 
down where the proof is heading, what they have to prove and how 
they might be able to prove it. Because this is not part of the formal 
proof, we indicate this exploration by separating it from the proof 
proper by using a box which looks like 



Preface vii 

(Include here what must be proved etc.) 

Experience has shown that it helps students to use this material 
if important theorems are given specific names which suggest their 
content. We have enclosed these names in square brackets before 
the statement of the theorem. We encourage students to use these 
names when justifying their solutions to exercises. They often find 
it convenient to abbreviate the names to just the relevant initials. 
(For example, the name "Small Degree Irreducibility Theorem" can 
be abbreviated to S.D.LT.) 

We are especially grateful to our colleague Gary Davis, who pointed 
the way towards a more concrete treat.ment of field extensions (using 
residue rings rather than quotient rings) and thus made the course 
accessible to a wider class of students. We are grateful to Ernie Bowen, 
Jeff Brooks, Grant Cairns, Mike Canfell, Brian Davey, Alistair Gray, 
Paul Halmos, Peter Hodge, Alwyn Horadam, Deborah King, Margaret 
McIntyre, Bernhard H. Neumann, Krist.en Pearson, Suzanne Pearson, 
Alf van der Poorten, Brailey Sims, Ed Smit.h and Peter Stacey, who 
have given us helpful feedback, made suggest.ions and assisted with the 
proof reading. 

We thank Dorothy Berridge, Ernie Bowen, Helen Cook, Margaret 
McDonald and Judy Storey for skilful'JEXing of the text and diagrams, 
and Norman Gaywood for a.<;sisting with the index. 

A.J., S.A.M., K.R.P. 

April 1991 
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