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Preface 

" ... many eminent scholars, endowed with great geometric talent, 
make a point of never disclosing the simple and direct ideas that guided 
them, subordinating their elegant results to abstract general theories 
which often have no application outside the particular case in question. 
Geometry was becoming a study of algebraic, differential or partial 
differential equations, thus losing all the charm that comes from its 
being an art." 

H. Lebesgue, Ler;ons sur les Constructions Geometriques, Gauthier
Villars, Paris, 1949. 

This book is based on lecture courses given to final-year students at the Uni
versity of Nottingham and to M.Sc. students at the University of the West 
Indies in an attempt to reverse the process of expurgation of the geometry 
component from the mathematics curricula of universities. This erosion is in 
sharp contrast to the situation in research mathematics, where the ideas and 
methods of geometry enjoy ever-increasing influence and importance. In the 
other direction, more modern ideas have made a forceful and beneficial impact 
on the geometry of the ancients in many areas. Thus trigonometry has vastly 
clarified our concept of angle, calculus has revolutionised the study of plane 
curves, and group theory has become the language of symmetry. 

To illustrate this last point at a fundamental level, consider the notion of 
congruence in plane geometry: two triangles are congruent if one can be moved 
onto the other so that they coincide exactly. This property is guaranteed by 
each of the familiar conditions SSS, SAS, SAA and RHS. So congruent triangles 
are just copies of the same triangle appearing in (possibly) different places. This 
makes it clear that congruence is an equivalence relation, whose three defining 
properties correspond to properties of the moves mentioned above: 

vii 



VIII Symmetries 

• reflexivity - the identity move, 

• symmetry - inverse moves, 

• transitivity - composition of moves. 

Thinking of these moves as transformations, for which the associative law holds 
automatically, we have precisely the four axioms for a group: closure, associa
tivity, identity and inverses. 

The group just described underlies and in a sense determines plane geom
etry. It is called the Euclidean group and occupies a dominant position in this 
book. Its elements are isometries, as defined in Chapter 1, and a detailed study 
of these occupies Chapters 2 and 4. The rather bulky Chapters 3 and 5 are 
intended as crash courses on the theory of groups and group presentations re
spectively, and both lay emphasis on groups that are semidirect products. Such 
groups arise in the classification of discrete subgroups of the Euclidean group 
in Chapters 6, 7 and 8, and corresponding tessellations (or tilings) appear in 
Chapter 9. Regular tessellations of the sphere are classified in Chapter 10, and 
tessellations of other spaces, such as the hyperbolic plane, form the subject 
of Chapter 11. Finally, the notions of polygon in 2-space and polyhedron in 
3-space are generalised in Chapter 12 to that of a polytope in n-dimensional 
Euclidean space. Regular polytopes are then defined using group theory and 
classified in all dimensions. The classification contains some surprises in di
mension 4 and is achieved by as elegant a piece of mathematics as you might 
imagine. 

The exercises at the end of each chapter form an integral part of the book, 
being designed to reinforce your grasp of the material. A large majority are 
more or less routine, but a handful of more challenging problems are included 
for good measure. Solutions to most of them, or at least generous hints, are 
given later, and suggestions for background, alternative and further reading 
appear towards the end of the book. 

It is a pleasure to acknowledge my gratitude to a number of people: to 
J.A. Green, B.H. Neumann, J.H. Conway and R.C. Lyndon for influence and 
guidance over the years, and likewise to John Humphreys, Bob Laxton, Jim 
Wiegold and Geoff Smith for valuable encouragement; to Maxine Francis, Kate 
MacDougall and Aaron Wilson for skilful preparation of the typescript and 
diagrams; to all at Springer-Verlag, especially David Anderson, Nick Wilson, 
Susan Hezlet, David Ireland and Karen Borthwick, for efficient handling of 
matters connected with production; and last but not least to the students who 
provided much useful feedback on my lectures. 

D.L.J. 
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