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Preface to the 
English Edition 

Addressing the English-speaking readers of this book, I 
should state who I imagine those readers are. The preface 
to the first German edition was written for students in a 
different academic system, and the description I gave there 
doesn't apply directly. Should we, in this global age, have 
more compatibility in academic education? There is a de­
bate going on now in Germany about whether we should 
introduce the bachelor's degree, or "Bakkalaureus" as some 
would call it, so that our system can be more easily com­
pared with those abroad. Difficult questions! But it has been 
observed that whatever the academic system, students of 
the same age have about the same level of knowledge and 
sophistication. Therefore I can simply say that this is a book 
for twenty-year-old students. 

This book is about manifolds, differential forms, the Car­
tan derivative, de Rham cohomology, and the general ver­
sion of Stoke's theorem. This theory contains classical vec­
tor analysis, with its gradient, curl, and divergence operators 
and the integral theorems of Gauss and Stokes, as a special 
case. But since the student may not immediately recognize 
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VI Preface to the English Edition -----------------------------=---------------------------------

this fact, some care is given to the translation between these 
two mathematical languages. 

Speaking of translation, I would like to acknowledge the 
excellent work of Leslie Kay in translating the German text 
into English. We have exchanged detailed e-mail messages 
throughout the translation process, discussing mathematics 
and subtleties oflanguage. While I was using the opportunity 
of this English edition to eliminate all the typos and mistakes 
I knew of in the present German edition, Dr. Kay initiated 
many additional improvements. I wish to thank her for all 
the care she has devoted to the book. 

Langquaid, Germany 
October 2000 

Klaus Janich 



Preface to the 
First German 
Edition 

An elegant author says in two lines what takes another a 
full page. But if a reader has to mull over those two lines 
for an hour, while he could have read and understood the 
page in five minutes, then-for this particular reader-it was 
probably not the right kind of elegance. It all depends on who 
the readers are. 

Here I am writing for university students in their sec­
ond year, who know nothing yet about manifolds and such 
things, but can feel quite satisfied if they have a good over­
all understanding of the differential and integral calculus of 
one and several variables. I ask other possible readers to be 
patient from time to time. Of course, I too would like to com­
bine both kinds of elegance, but when that doesn't work I 
don't hesitate to throw line-saving elegance overboard and 
stick to time-saving elegance. At least that's my intention! 

Introductory textbooks are usually meant lito be used in 
conjunction with lectures:' ·but even this purpose is better 
served by a book that can be understood on its own. I have 
made an effort to organize the book so that you can work 
through it on a desert island, assuming you take your lec-

vii 
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ture notes from your first two semesters along and-in case 
those lectures didn't include topology-a few notes on basic 
topological concepts. 

Since discussion partners are sometimes hard to find 
on desert islands, I have included tests, which I would like 
to comment on now. Some people disapprove of multiple­
choice tests on principle because they think putting check 
marks in boxes is primitive and unworthy of a mathemati­
cian. It's hard to argue with that! Actually, some of my test 
questions are so utterly and obviously simple that they'll give 
you-a healthy little scare when you find you can't answer 
them after all. But many of them are hard, and resisting 
the specious arguments of the wrong answers takes some 
firmness. The tests should be taken seriously as a training 
partner for the reader who is alone with the book. By the 
way, there is at least one right answer in each set of three, 
but there may be several. 

Now I won't describe the book any further-it's in front 
of you, after all-but will turn instead to the pleasant duty of 
looking back when the work is done and gratefully acknowl­
edging the many kinds of help I received. 

Martina Hertl turned the manuscript into TEX, and 
Michael Prechtel was always there with his advice and sup­
port as a TEX wizard. I received useful macros from Martin 
Lercher as well as from the publisher, and I was one of the 
first to use diagram.tex, developed by Bernhard Rauscher, for 
the diagrams. My students Robert Bieber, Margarita Kraus, 
Martin Lercher, and Robert Mandl expertly proofread the 
next to the last version of the book. I am very grateful for all 
their help. 

Regensburg, Germany 
June 1992 

Klaus Janich 
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