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To Claudia and Martin 



Preface 

This book presents an application-oriented introduction to the the­
ory of nonhnear optimization. It describes basic notions and concep­
tions of optimization in the setting of normed or even Banach spaces. 
Various theorems are appHed to problems in related mathematical 
areas. For instance, the Euler-Lagrange equation in the calculus of 
variations, the generahzed Kolmogorov condition and the alternation 
theorem in approximation theory as well as the Pontryagin maximum 
principle in optimal control theory are derived from general results of 
optimization. 

Because of the introductory character of this text it is not intended 
to give a complete description of all approaches in optimization. For 
instance, investigations on conjugate duality, sensitivity, stability, re­
cession cones and other concepts are not included in the book. 

The bibliography gives a survey of books in the area of nonlinear 
optimization and related areas like approximation theory and optimal 
control theory. Important papers are cited as footnotes in the text. 

This third edition is an enlarged and revised version containing 
an additional chapter on extended semidefinite optimization and an 
updated bibliography. 

I am grateful to S. GeuB, S. Gmeiner, S. Keck, Prof. Dr. E.W. 
Sachs and H. Winkler for their support, and I am especially indebted 
to D.G. Cunningham, Dr. G. Eichfelder, Dr. F. Hettlich, Dr. J. Klose, 
Prof. Dr. E.W. Sachs, Dr. T. Staib and Dr. M. Stingl for fruitful 
discussions. 

Erlangen, September 2006 Johannes Jahn 
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