
Graduate Texts in Mathematics 30 

Editorial Board: F. W. Gehring 
P. R. Halmos (Managing Editor) 
C.C. Moore 



Nathan Jacobson 

Lectures in Abstract 
Algebra 

I. Basic Concepts 

Springer-Verlag New York Heidelberg Berlin 



Nathan Jacobson 
Department of Mathematics 
Yale University 
New Haven. Connecticut 06520 

Managing Editor 

P. R. Halmos 
Indiana University 
Department of Mathematics 
Swain Hall East 
Bloomington, Indiana 47401 

Editors 

F. W. Gehring 
University of Michigan 
Department of Mathematics 
Ann Arbor, Michigan 4gl04 

AMS Subject Classifications 
06-01 ,12-0 1,13-01 

C. C. Moore 
Universicy of California at Berkeley 
DeparCment of Mathematics 
Berkeley, California 94720 

Library 01 Congress Cala/oging in Publica/ion Data 

Iacobson, Nachan, 1910-
Lectures in abstract algebra. 

(Graduate texts in mathematics; 30-32) 
Reprint of the 1951- 1964 ed. published by Van Nostrand, New York in The 

University series in higher mathematics. 
Bibliography: v. 3, p. 
Includes indexes. 
CONTENTS: 1. Basic concepts. 2. Linear algebra. 3. Theory of fields and 

Galois tbeory. 
L Algebra, Abstract. 1. Title. II. Series. 

QAI62J3 1975 512'.02 75-15564 

All rights reserved 

No part of this book may be translated or reproduced in any form withouc written 
permission from Springer-Verlag. 

© 1951 by Nathan Iacobson 
Softcover reprint of the hardcover 1st edition 1951 

Originally published in the University Series in Higher Mathematics (D. Van 
Nostrand Company); ediced by M. H. Stone, L. Nirenberg and S. S. Chern. 

IS BN -13: 978-1-4684-7303-2 e·ISBN-13: 978-1·4684-7301-8 
001: 10.10071978-1-4684-7301-8 



TO 

MY WIFE 



PREFACE 

The present volume is the first of three that will be published 
under the general title Lectures in Abstract Algebra. These vol­
umes are based on lectures which the author has given during 
the past ten years at the University of North Carolina, at The 
Johns Hopkins University, and at Yale "University. The general 
plan of the work IS as follows: The present first volume gives an 
introduction to abstract algebra and gives an account of most of 
the important algebraIc concepts. In a treatment of this type 
it is impossible to give a comprehensive account of the topics 
which are introduced. Nevertheless we have tried to go beyond 
the foundations and elementary properties of the algebraic sys­
tems. This has necessitated a certain amount of selection and 
omission. We feel that even at the present stage a deeper under­
standing of a few topics is to be preferred to a superficial under­
standing of many. 

The second and third volumes of this work will be more special­
ized in nature and will attempt to give comprehensive accounts 
of the topics which they treat. Volume II will bear the title 
Linear Algebra and will deal with the theorv of vectQ!_JlP.-a.ces..... 
Volume III, The Theory of Fields and Galois Theory, will be con­
cerned with the algebraic structure offieras and with valuations 
of fields. 

All three volumes have been planned as texts for courses. A 
great many exercises of varying degrees of difficulty have been 
included. Some of these perhaps rate stars, but we have felt 
that the disadvantages of the system of starring difficult exercises 
outweigh its advantages. A few sections have been starred 
(notation: *1) to indicate that these can be omitted without 
jeopardizing the understanding of subsequent material. 
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V1l1 PREFACE 

We are indebted to a great many friends for helpful criticisms 
and encouragement during the course of preparation of this vol­
ume. Professors A. H. Clifford, G. Hochschild and R. E. Johnson, 
Drs. D. T. Finkbeiner and W. H. Mills have read parts of the 
manuscript and given us useful suggestions for improving it. 
Drs. Finkbeiner and Mills have assisted with the proofreading. 
I take this opportunity to offer my sincere thanks to all of these 
men. 

New Haven, Conn. 
January 22, I95I 

N. J. 
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