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List of Frequently Used Symbols 

All symbols are fully defined at the place where they are first introduced. As 
a convenience to the reader we have collected some of the more frequently 
used symbols in several places. The largest collection is the one given below. 
Shorter lists, for later use can be found in the introductions to Chapters X 
and XI. 

deC 

E 

equality by definition 
"a E A" means" a belongs to the set A" or "a is an element 

of A" 
the set of nonnegative integers (0 included) 
the set of strictly positive integers (0 excluded) 
the set of positive and negative integers including 0 
the set of real numbers (the real line) 
the set of ordered n-tuples of real numbers 
a E ~n may be represented as a = (al' ... ' an). Moreover, 

~n is a Euclidian space with the scalar product 
n 

<a, b) = L aibi 
i= 1 

where a = (al' ... , an), b = (b 1 , • •• ,bn). ~l = ~; ~2 is 
the plane 

the set of complex numbers 
the set of ordered n-tuples of complex numbers. The 

scalar product in en is denoted as in ~n, but 
n 

<a, b) = I,aibi = <b, a). 
i= 1 

xiii 
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Ilull 

A(-) 

B(·, .) 

q., ., .) 
N(-) 

List of Frequently Used Symbols 

the set of n-times continuously differentiable functions 
on a domain "II. We may furthermore specify the 
domain E where these functions take their values by 
writing <'(/n( "II; E). 

the norm of u. For instance, if u E C n we have Ilull = 

<u, U)1/2; if u E <'(/("11), Ilull = l.u.b Ilu(x)ll, where 
XEf 

Ilu(x)11 is the norm of u(x) in the domain of values for 
u; Ilull = 0 implies that u = o. 

a linear operator: 

A((1u + [3v) = (1A(u) + [3A(v). 

a bilinear operator: 

B((11 U1 + (12 U2, [31 V1 + [31 V2) = (11[31 B(u1, v1) 
+ (11[32 B(u1, v2) + (12 [31 B(u2, v1) + (12[32 B(U2, v2) 

a trilinear operator 
a general nonlinear operator with no constant term and 

no linear term in a neighborhood of 0: 

N(u) ~f B(u, u) + CCu, u, u) + 0(lluI1 4 ) 

Sometimes we assign a slightly different meaning to A, B, C: 

(A·U)i = Aijuj = A il u 1 + A i2 u2 + ... + Ainun 

(B. U· V)i = Bijkujvk 

(C· u· V· W)i = CijklUJUk WI 

where we use the summation convention for repeated indices and where 

(Aij) is the matrix of a linear operator 

F(t, fl, U) 

f(t, fl, u) 
Fu, Fuu , etc. 
FJt,fl,Uol·) 

(J = ~ + iIJ 

(Bijk ) is the matrix of a bilinear operator 

(Cijkl) is the matrix of a trilinear operator 

a nonlinear operator-see the opening paragraph of 
Chapter I 

reduction of F to "local form," see §1.3 
derivatives of F; see §1.6-7 
the linear operator associated with the derivative of F at 

U = Uo 
first derivative of F(t, fl, U), evaluated at U = Uo, acting 

on v 
an eigenvalue of a linear operator arising in the study of 

stability of u = 0 

When u = 0 corresponds to a time-periodic U(t) = 

U(t + T), then (J is a Floquet exponent 



List of Frequently Used Symbols xv 

A = eaT 

}' = ~ + il1 

w; T = 2n/w 
e 

<a, b) 

[a, b] 

[a, b]nT 

a Floquet multiplier; see preceding entry and §VII.6.2 
an eigenvalue of a linear operator arising in the study of 

bifurcating solution. We use the same notation, ~ and 
11, for the real and imaginary part of (J and y and depend 
on the context to define the difference. 

frequency wand period T 
amplitude of a bifurcating solution defined in various 

ways: under (11.2), (V.2), (VI.72), (VII.6)z, (VIII.22), 
Figure X.l. 

notation for a scalar product <a, b) = <b, a) with the 
usual conventions. For vectors in Cn,_<a, b) = a· b. 
For vector fields in "f/', <a, b) = Sf a(x)b(x) d"f/'. See 
(IV.7), under (VI.4), §VI.6, under (VI.134h, and under 
(VI.144) 

another scalar product for 2n-periodic functions, defined 
above (VIII.15) 

see (IX. 16) 

Some operators whose domains are 2n-periodic functions of s: 

J(., e), J( " 0) = J 0 (VII.38) 

Jlo (VIII.15); Jl6 (VIII.19); JI(e) above (VIII.37). 

Similar operators for nT-periodic functions are defined under notation for 
Chapter IX, at the beginning of Chapter IX. 

Order Symbols. we say thatf(e) = O(en) if 

we say thatf(e) = o(en) 

f(e) . 
-n IS bounded when e -+ 0 
e 

limf(e) = 0 .-0 en . 


