Undergraduate Texts in Mathematics

Editors F. W. Gehring P. R. Halmos

> Advisory Board C. DePrima I. Herstein J. Kiefer

Gérard Iooss Daniel D. Joseph

Elementary Stability and Bifurcation Theory

Springer-Verlag New York Heidelberg Berlin

Gérard Iooss

Faculté des Sciences Institut des Mathématiques et Sciences Physiques Université de Nice Parc Valrose, Nice 06034 FRANCE

Daniel D. Joseph

Department of Aerospace Engineering and Mechanics University of Minnesota Minneapolis, MN 55455 USA

Editorial Board

F. W. Gehring

University of Michigan Department of Mathematics Ann Arbor, Michigan 48104 USA

P. R. Halmos

University of Indiana Department of Mathematics Bloomington, Indiana 47401 USA

AMS Subject Classification (1980): 34-01, 34, A34, 34D30, 34D99, 34C99

With 47 illustrations.

Library of Congress Cataloging in Publication Data

Iooss, Gérard. Elementary stability and bifurcation theory.

(Undergraduate texts in mathematics) Bibliography: p. Includes index.
1. Differential equations—Numerical solutions.
2. Evolution equations—Numerical solutions.
3. Stability. 4. Bifurcation theory. I. Joseph, Daniel D., joint author. II. Title.
OA372.168 515.3'5 80-20782

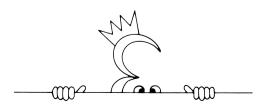
All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag.

© 1980 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1980

987654321

ISBN 978-1-4684-9338-2 ISBN 978-1-4684-9336-8 (eBook) DOI 10.1007/978-1-4684-9336-8 Everything should be made as simple as possible, but not simpler.

ALBERT EINSTEIN



Contents

List	of Frequently Used Symbols	xiii
	oduction nowledgments	1 3
-	oter I ilibrium Solutions of Evolution Problems	4
I I.2 F	Dne-Dimensional, Two-Dimensional, <i>n</i> -Dimensional, and nfinite-Dimensional Interpretations of (I.1) Forced Solutions; Steady Forcing and <i>T</i> -Periodic Forcing; Autonomous	4
I.3 H	nd Nonautonomous Problems Reduction to Local Form Equilibrium Solutions	6 7 8
I.5 H	Equilibrium Solutions and Bifurcating Solutions	8
	Bifurcating Solutions and the Linear Theory of Stability	9
I.7 N	Notation for the Functional Expansion of $F(t, \mu, U)$	10
Note	S	11
Chap	oter II	
	rcation and Stability of Steady Solutions of Evolution ations in One Dimension	13
II.1 II.2	The Implicit Function Theorem Classification of Points on Solution Curves	13 14
II.3	The Characteristic Quadratic. Double Points, Cusp Points, and	1.5
II.4	Conjugate Points Double Point Bifurgation and the Implicit Europian Theorem	15
II.4 II.5	Double-Point Bifurcation and the Implicit Function Theorem Cusp-Point Bifurcation and Characteristic Quadratics	16 17
II.5 II.6	Triple-Point Bifurcation	17
11.0	Tiple-1 one Direction	19

43

II.7	Conditional Stability Theorem	19
II.8	The Factorization Theorem in One Dimension	22
II.9	Equivalence of Strict Loss of Stability and Double-Point Bifurcation	23
II.10	Exchange of Stability at a Double Point	23
II.11	Exchange of Stability at a Double Point for Problems Reduced to	
	Local Form	25
II.12	Exchange of Stability at a Cusp Point	28
II.13	Exchange of Stability at a Triple Point	28
II.14	Global Properties of Stability of Isolated Solutions	29

Chapter III

Imperfection Theory and Isolated Solutions Which Perturb	
Bifurcation	32
III.1 The Structure of Problems Which Break Double-Point Bifurcation	33
III.2 The Implicit Function Theorem and the Saddle Surface Breaking	
Bifurcation	34
III.3 Examples of Isolated Solutions Which Break Bifurcation	36
III.4 Iterative Procedures for Finding Solutions	37
III.5 Stability of Solutions Which Break Bifurcation	40
III.6 Isolas	42
Exercise	42

Notes

Chapter IV	
Stability of Steady Solutions of Evolution Equations in Two	
Dimensions and <i>n</i> Dimensions	45
IV.I. Eigenvalues and Eigenvectors of a $n \times n$ Matrix	46
IV.2 Algebraic and Geometric Multiplicity—The Riesz Index	46
IV.3 The Adjoint Eigenvalue Problem	47
IV.4 Eigenvalues and Eigenvectors of a 2×2 Matrix	48
4.1 Eigenvalues	48
4.2 Eigenvectors	49
4.3 Algebraically Simple Eigenvalues	49
4.4 Algebraically Double Eigenvalues	49
4.4.1 Riesz Index 1	49
Riesz Index 2	50
IV.5 The Spectral Problem and Stability of the Solution $\mathbf{u} = 0$ in \mathbb{R}^n	51
IV.6 Nodes, Saddles, and Foci	52
IV.7 Criticality and Strict Loss of Stability	53
Appendix IV.1	
Biorthogonality for Generalized Eigenvectors	55
Appendix IV.2	
Projections	58

Bifu	ter V rcation of Steady Solutions in Two Dimensions and the ility of the Bifurcating Solutions	62
V.1 7	The Form of Steady Bifurcating Solutions and Their Stability	62
V.2 (Classification of the Three Types of Bifurcation of Steady Solutions	65
	Bifurcation at a Simple Eigenvalue	66
V.5 I	Stability of the Steady Solution Bifurcating at a Simple Eigenvalue Bifurcation at a Double Eigenvalue of Index Two	67 67
	Stability of the Steady Solution Bifurcating at a Double Eigenvalue of ndex Two	69
	Bifurcation and Stability of Steady Solutions in the Form (V.2) at a Double Eigenvalue of Index One (Semi-Simple)	70
V.8 1	Bifurcation and Stability of Steady Solutions (V.3) at a Semi-Simple Double Eigenvalue	73
	Examples of Stability Analysis at a Double Semi-Simple	
(Index-One) Eigenvalue	75
Impl	ndix V.1 licit Function Theorem for a System of Two Equations in Two nown Functions of One Variable	80
Exerc	zises	81
Met	ter VI hods of Projection for General Problems of Bifurcation into dy Solutions	86
VI.1	The Evolution Equation and the Spectral Problem	86
VI.2	Construction of Steady Bifurcating Solutions as Power Series in the	07
VI 2	Amplitude	87 89
VI.3	\mathbb{R}^1 and \mathbb{R}^1 in Projection Stability of the Diffusion Solution	89 90
VI.4 VI.5	Stability of the Bifurcating Solution The Extra Little Part for \mathbb{R}^1 in Projection	90 91
VI.5 VI.6	Projections of Higher-Dimensional Problems	93
v I.U	I TO DOMOND OF INGHOL-DIMONDIONAL I TO DOMID	

VI.7 The Spectral Problem for the Stability of $\mathbf{u} = 0$	95
$v_{1,7}$ The spectrum representation for the statistic of $\mathbf{u} = 0$	
VI.8 The Spectral Problem and the Laplace Transform	97
VI.9 Projections into \mathbb{R}^1	100
VI.10 The Method of Projection for Isolated Solutions Which Perturb	
Bifurcation at a Simple Eigenvalue (Imperfection Theory)	101
VI.11 The Method of Projection at a Double Eigenvalue of Index Two	103
VI.12 The Method of Projection at a Double Semi-Simple Eigenvalue	106

Appendix VI.1

Examples of the Method of Projection

110

Chapter	r VII	
Bifurca	ation of Periodic Solutions from Steady Ones (Hopf	
Bifurcation) in Two Dimensions		123
VII.1	The Structure of the Two-Dimensional Problem Governing	
	Hopf Bifurcation	123
VII.2	Amplitude Equation for Hopf Bifurcation	124
VII.3	Series Solution	125
VII.4	Equations Governing the Taylor Coefficients	125
VII.5	Solvability Conditions (the Fredholm Alternative)	125
VII.6	Floquet Theory	126
	6.1 Floquet Theory in \mathbb{R}^1	127
	6.2 Floquet Theory in \mathbb{R}^2 and \mathbb{R}^n	129
VII.7	Equations Governing the Stability of the Periodic Solutions	133
VII.8	The Factorization Theorem	133
VII.9	Interpretation of the Stability Result	134
Example		134

Chapter VIII

Bifurcation of Periodic Solutions in the General Case	139
VIII.1 Eigenprojections of the Spectral Problem VIII.2 Equations Governing the Projection and the Complementary	139
Projection	140
VIII.3 The Series Solution Using the Fredholm Alternative	142
VIII.4 Stability of the Hopf Bifurcation in the General Case	146
Examples	148
Notes	155

Chap	ter IX	
Subh	armonic Bifurcation of Forced T-Periodic Solutions	157
Notat	tion	157
IX.1	Definition of the Problem of Subharmonic Bifurcation	158
IX.2	Spectral Problems and the Eigenvalues $\sigma(\mu)$	160
IX.3	Biorthogonality	161
IX.4	Criticality	161
IX.5	The Fredholm Alternative for $J(\mu) - \sigma(\mu)$ and a Formula Expressing	
	the Strict Crossing (IX.20)	162
IX.6	Spectral Assumptions	163
IX.7	Rational and Irrational Points of the Frequency Ratio at Criticality	163
IX.8	The Operator J and its Eigenvectors	165
IX.9	The Adjoint Operator J*, Biorthogonality, Strict Crossing, and the	
	Fredholm Alternative for J	166

IX.10 The Amplitude ε and the Biorthogonal Decomposition of Bifurcating	
Subharmonic Solutions	167
IX.11 The Equations Governing the Derivatives of Bifurcating Subharmonic	
Solutions with Respect to ε at $\varepsilon = 0$	168
IX.12 Bifurcation and Stability of <i>T</i> -Periodic and 2 <i>T</i> -Periodic Solutions	169
IX.13 Bifurcation and Stability of nT -Periodic Solutions with $n > 2$	172
IX.14 Bifurcation and Stability of 3T-Periodic Solutions	173
IX.15 Bifurcation of 4 <i>T</i> -Periodic Solutions	176
IX.16 Stability of 4 <i>T</i> -Periodic Solutions	179
IX.17 Nonexistence of Higher-Order Subharmonic Solutions and Weak	
Resonance	183
IX.18 Summary of Results about Subharmonic Bifurcation	184
IX.19 Imperfection Theory with a Periodic Imperfection	184
Exercises	185
Chapter X	
Bifurcation of Forced T-Periodic Solutions into Asymptotically	
Quasi-Periodic Solutions	186
X.1 The Biorthogonal Decomposition of the Solution and the Biorthogonal	
Decomposition of the Equations	187
Exercise	187
X.2 Change of Variables	190
X.3 Normal Form of the Equations	192
X.4 The Normal Equations in Polar Coordinates	199
X.5 The Torus and Trajectories on the Torus in the Irrational Case	200
X.6 The Torus and Trajectories on the Torus When $\omega_0 T/2\pi$ is a Rational	
Point of Higher Order $(n \ge 5)$	204
X.7 The Form of the Torus in the Case $n = 5$	206
X.8 Trajectories on the Torus When $n = 5$	207
X.9 The Form of the Torus When $n > 5$	210
X.10 Trajectories on the Torus When $n \ge 5$	213
X.11 Asymptotically Quasi-Periodic Solutions	215
X.12 Stability of the Bifurcated Torus	217
X.13 Subharmonic Solutions on the Torus	218
X.14 Stability of Subharmonic Solutions on the Torus	221
X.15 Frequency Locking	222
Appendix X.1	
Computation of Asymptotically Quasi-Periodic Solutions Which	
Bifurcate at Rational Points of Higher Order $(n \ge 5)$ by the	
Method of Power Series Using the Fredholm Alternative	226
Appendix X.2	
Direct Computation of Asymptotically Quasi-Periodic Solutions	

Which Bifurcate at Irrational Points Using the Method of TwoTimes, Power Series, and the Fredholm Alternative230

xi

Appei	ndix X.3	
	t Computation of Asymptotically Quasi-Periodic Solutions h Bifurcate at Rational Points of Higher Order	
	g the Method of Two Times	234
Notes		241
110103		211
Chapt		
	ndary Subharmonic and Asymptotically Quasi-Periodic	
	cation of Periodic Solutions of (Hopf's Type) in the	
Auto	nomous Case	243
Notat	ion	245
XI.1	Spectral Problems	245
XI.2	Criticality and Rational Points	247
XI.3	Spectral Assumptions about J_0	248
XI.4	Spectral Assumptions about J in the Rational Case	248
XI.5	Strict Loss of Stability at a Simple Eigenvalue of J_0	250
XI.6	Strict Loss of Stability at a Double Semi-Simple Eigenvalue of J_0	252
XI .7	Strict Loss of Stability at a Double Eigenvalue of Index Two	253
XI.8	Formulation of the Problem of Subharmonic Bifurcation of Periodic	
	Solutions of Autonomous Problems	255
XI.9	The Amplitude of the Bifurcating Solution	256
XI.10	Power-Series Solutions of the Bifurcation Problem	257
XI.11	Subharmonic Bifurcation When $n = 2$	259
XI.12	Subharmonic Bifurcation When $n > 2$	262
XI.13	Subharmonic Bifurcation When $n = 1$ in the Semi-Simple Case	265
XI.14	"Subharmonic" Bifurcation When $n = 1$ in the Case When Zero is an	
	Index-Two Double Eigenvalue of J_0	266
XI.15	Stability of Subharmonic Solutions	268
XI.16	Summary of Results about Subharmonic Bifurcation in the	
	Autonomous Case	272
	Bifurcation of a Torus in Autonomous Nonresonant Cases	273
XI.18	Asymptotically Quasi-Periodic Solutions on the Bifurcated Torus	276
XI.19	Strictly Quasi-Periodic Solutions on the Bifurcated Torus	278
Exerci	ses	279

Index

List of Frequently Used Symbols

All symbols are fully defined at the place where they are first introduced. As a convenience to the reader we have collected some of the more frequently used symbols in several places. The largest collection is the one given below. Shorter lists, for later use can be found in the introductions to Chapters X and XI.

def =	equality by definition
e	" $a \in A$ " means "a belongs to the set A" or "a is an element
	of A"
\mathbb{N}	the set of nonnegative integers (0 included)
ℕ*	the set of strictly positive integers (0 excluded)
\mathbb{Z}	the set of positive and negative integers including 0
R	the set of real numbers (the real line)
\mathbb{R}^n	the set of ordered <i>n</i> -tuples of real numbers
	$\mathbf{a} \in \mathbb{R}^n$ may be represented as $\mathbf{a} = (a_1, \dots, a_n)$. Moreover,
	\mathbb{R}^n is a Euclidian space with the scalar product
	n
	$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=1}^{n} a_i b_i$
	where $\mathbf{a} = (a_1, \dots, a_n)$, $\mathbf{b} = (b_1, \dots, b_n)$. $\mathbb{R}^1 = \mathbb{R}$; \mathbb{R}^2 is the plane

the set of complex numbers \mathbb{C} \mathbb{C}^n the set of ordered n-tuples of complex numbers. The scalar product in \mathbb{C}^n is denoted as in \mathbb{R}^n , but

$$\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=1}^{n} a_i \overline{b_i} = \langle \overline{\mathbf{b}}, \overline{\mathbf{a}} \rangle.$$

$$\begin{aligned} & \mathscr{C}^{n}(\mathscr{V}) & \text{the set of } n\text{-times continuously differentiable functions on a domain } \mathscr{V}. We may furthermore specify the domain E where these functions take their values by writing $\mathscr{C}^{n}(\mathscr{V}; E)$.
 $\|\mathbf{u}\| & \text{the norm of } \mathbf{u}. \text{ For instance, if } \mathbf{u} \in \mathbb{C}^{n} \text{ we have } \|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2}; \text{ if } \mathbf{u} \in \mathscr{C}(\mathscr{V}), \|\mathbf{u}\| = 1.u.b \|\mathbf{u}(x)\|, \text{ where } \|\mathbf{u}(x)\| \text{ is the norm of } \mathbf{u}(x) \text{ in the domain of values for } \mathbf{u}; \|\mathbf{u}\| = 0 \text{ implies that } \mathbf{u} = 0. \end{aligned}$

$$\mathbf{A}(\cdot) & \text{a linear operator:} & \mathbf{A}(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \mathbf{A}(\mathbf{u}) + \beta \mathbf{A}(\mathbf{v}). \end{aligned}$$

$$\mathbf{B}(\cdot, \cdot) & \text{a bilinear operator:} & \mathbf{B}(\alpha_{1}\mathbf{u}_{1} + \alpha_{2}\mathbf{u}_{2}, \beta_{1}\mathbf{v}_{1} + \beta_{1}\mathbf{v}_{2}) = \alpha_{1}\beta_{1}\mathbf{B}(\mathbf{u}_{1}, \mathbf{v}_{1}) + \alpha_{1}\beta_{2}\mathbf{B}(\mathbf{u}_{1}, \mathbf{v}_{2}) + \alpha_{2}\beta_{1}\mathbf{B}(\mathbf{u}_{2}, \mathbf{v}_{1}) + \alpha_{2}\beta_{2}\mathbf{B}(\mathbf{u}_{2}, \mathbf{v}_{2}) \end{aligned}$$

$$\mathbf{C}(\cdot, \cdot, \cdot) & \text{a trilinear operator a general nonlinear operator with no constant term and } \mathbf{M}(\mathbf{v}) = \mathbf{u}_{1}\mathbf{u} + \mathbf{u}_{2}\mathbf{u}_{2}\mathbf{u} + \mathbf{u}_{2}\mathbf{u} + \mathbf{u}_{2}\mathbf{u}_{2}\mathbf{u} + \mathbf{u}_{2}\mathbf{u} + \mathbf{u}_{2}\mathbf{u} + \mathbf{u}_{2}\mathbf{u} + \mathbf{u}_{2}\mathbf{u} + \mathbf{u}_{2}\mathbf{u} + \mathbf{u}_{2}\mathbf{u} + \mathbf{u}_{2$$$$

no linear term in a neighborhood of 0: $\mathbf{N}(\mathbf{u}) \stackrel{\text{def}}{=} B(\mathbf{u}, \mathbf{u}) + C(\mathbf{u}, \mathbf{u}, \mathbf{u}) + O(||\mathbf{u}||^4)$

Sometimes we assign a slightly different meaning to A, B, C:

$$(\mathbf{A} \cdot \mathbf{u})_i = A_{ij}u_j = A_{i1}u_1 + A_{i2}u_2 + \dots + A_{in}u_n$$
$$(\mathbf{B} \cdot \mathbf{u} \cdot \mathbf{v})_i = B_{ijk}u_jv_k$$

$$(\mathbf{C} \cdot \mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w})_i = C_{ijkl} u_j v_k w_l$$

where we use the summation convention for repeated indices and where

	(A_{ij}) is the matrix of a linear operator
	(B_{ijk}) is the matrix of a bilinear operator
	(C_{ijkl}) is the matrix of a trilinear operator
$\mathbf{F}(t, \mu, \mathbf{U})$	a nonlinear operator—see the opening paragraph of Chapter I
$\mathbf{f}(t, \mu, \mathbf{u})$	reduction of F to "local form," see §I.3
$\mathbf{F}_{\mu}, \mathbf{F}_{\mu\mu}, \text{etc.}$	derivatives of F ; see §I.6–7
$\mathbf{F}_{u}(t, \mu, \mathbf{U}_{0} \cdot)$	the linear operator associated with the derivative of F at $\mathbf{U} = \mathbf{U}_0$
$\mathbf{F}_{u}(t,\mu,\mathbf{U}_{0} \mathbf{v})$	first derivative of $\mathbf{F}(t, \mu, \mathbf{U})$, evaluated at $\mathbf{U} = \mathbf{U}_0$, acting on v
$\sigma = \xi + i\eta$	an eigenvalue of a linear operator arising in the study of stability of $\mathbf{u} = 0$
	When $\mathbf{u} = 0$ corresponds to a time-periodic $\mathbf{U}(t) = \mathbf{U}(t + T)$, then σ is a Floquet exponent

$\lambda = e^{\sigma T}$	a Floquet multiplier; see preceding entry and §VII.6.2
$\gamma = \xi + i\eta$	an eigenvalue of a linear operator arising in the study of
	bifurcating solution. We use the same notation, ξ and
	η , for the real and imaginary part of σ and γ and depend
	on the context to define the difference.
ω ; $T = 2\pi/\omega$	frequency ω and period T
3	amplitude of a bifurcating solution defined in various
	ways: under (II.2), (V.2), (VI.72), (VII.6) ₂ , (VIII.22),
	Figure X.1.
$\langle a,b angle$	notation for a scalar product $\langle \overline{\mathbf{a}, \mathbf{b}} \rangle = \langle \mathbf{b}, \mathbf{a} \rangle$ with the
	usual conventions. For vectors in \mathbb{C}^n , $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a} \cdot \overline{\mathbf{b}}$.
	For vector fields in \mathscr{V} , $\langle \mathbf{a}, \mathbf{b} \rangle = \int_{\mathscr{V}} \mathbf{a}(\mathbf{x}) \overline{\mathbf{b}}(\mathbf{x}) d\mathscr{V}$. See
	$(IV.7)$, under $(VI.4)$, $VI.6$, under $(VI.134)_2$, and under
	(VI.144)
[a, b]	another scalar product for 2π -periodic functions, defined
	above (VIII.15)
$[\mathbf{a}, \mathbf{b}]_{nT}$	see (IX.16)
~	

Some operators whose domains are 2π -periodic functions of *s*:

$$J(\cdot, \varepsilon), \qquad J(\cdot, 0) = J_0 \text{ (VII.38)}$$
$$\mathbb{J}_0 \text{ (VIII.15);} \qquad \mathbb{J}_0^* \text{ (VIII.19);} \qquad \mathbb{J}(\varepsilon) \text{ above (VIII.37).}$$

Similar operators for nT-periodic functions are defined under notation for Chapter IX, at the beginning of Chapter IX.

Order Symbols. we say that $f(\varepsilon) = O(\varepsilon^n)$ if

$$\frac{f(\varepsilon)}{\varepsilon^n}$$
 is bounded when $\varepsilon \to 0$

we say that $f(\varepsilon) = o(\varepsilon^n)$

$$\lim_{\varepsilon \to 0} \frac{f(\varepsilon)}{\varepsilon^n} = 0.$$