Anthony W. Knapp

Advanced Real Analysis

Along with a companion volume *Basic Real Analysis*

Birkhäuser Boston • Basel • Berlin Anthony W. Knapp
81 Upper Sheep Pasture Road
East Setauket, NY, 11733-1729
U.S.A.
e-mail to: aknapp@math.sunysb.edu
http://www.math.sunysb.edu/~aknapp/books/advanced.html

Cover design by Mary Burgess.

Mathematics Subject Classicification (2000): 46-01, 42-01. 43-01, 35-01, 34-01, 47-01, 58-01, 60A99, 28C10

Library of Congress Cataloging-in-Publication Data

Knapp, Anthony W.

Advanced real analysis: along with a companion volume Basic real analysis / Anthony

W. Knapp

p. cm. – (Cornerstones)

Includes bibliographical references and index.

ISBN 0-8176-4382-6 (alk. paper)

1. Mathematical analysis. I. Title. II. Cornerstones (Birkhäuser)

QA300.K56 2005 515-dc22

2005048070

ISBN-10 0-8176-4382-6 ISBN-13 978-0-8176-4382-9 eISBN 0-8176-4442-3

Printed on acid-free paper.

Basic Real Analysis
Basic Real Analysis and Advanced Real Analysis (Set)

ISBN 0-8176-3250-6 ISBN 0-8176-4407-5

©2005 Anthony W. Knapp

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (MP)

9 8 7 6 5 4 3 2 1 SPIN 11372219

www.birkhauser.com

CONTENTS

	List	List of Figures		
	Preface			
	Dependence Among Chapters			
	Gui	de for the Reader	XV	
	Note	ation and Terminology	xix	
I.	INT	RODUCTION TO BOUNDARY-VALUE PROBLEMS	1	
	1.	Partial Differential Operators	1	
	2.	Separation of Variables	3	
	3.	Sturm–Liouville Theory	19	
	4.	Problems	31	
II.	COI	MPACT SELF-ADJOINT OPERATORS	34	
	1.	Compact Operators	34	
	2.	Spectral Theorem for Compact Self-Adjoint Operators	36	
	3.	Hilbert–Schmidt Theorem	41	
	4.	Unitary Operators	45	
		Classes of Compact Operators	46	
	6.	Problems	52	
III.	TOI	PICS IN EUCLIDEAN FOURIER ANALYSIS	54	
	1.	Tempered Distributions	54	
	2.	Weak Derivatives and Sobolev Spaces	60	
	3.	Harmonic Functions	69	
	4.	\mathcal{H}^p Theory	80	
	5.	Calderón–Zygmund Theorem	83	
	6.	Applications of the Calderón–Zygmund Theorem	92	
	7.	Multiple Fourier Series	96	
	8.	Application to Traces of Integral Operators	97	
	9.	Problems	99	

viii Contents

IV.	TOI	PICS IN FUNCTIONAL ANALYSIS	105
	1.	Topological Vector Spaces	106
	2.	$C^{\infty}(U)$, Distributions, and Support	112
	3.	Weak and Weak-Star Topologies, Alaoglu's Theorem	116
	4.	Stone Representation Theorem	121
	5.	Linear Functionals and Convex Sets	125
	6.	Locally Convex Spaces	128
	7.	Topology on $C_{\text{com}}^{\infty}(U)$	131
	8.	Krein–Milman Theorem	140
	9.	Fixed-Point Theorems	143
	10.	Gelfand Transform for Commutative C^* Algebras	146
	11.	Spectral Theorem for Bounded Self-Adjoint Operators	160
	12.	Problems	173
V.	DIS	TRIBUTIONS	179
	1.	Continuity on Spaces of Smooth Functions	179
	2.	Elementary Operations on Distributions	187
	3.	Convolution of Distributions	189
	4.	Role of Fourier Transform	202
	5.	Fundamental Solution of Laplacian	206
	6.	Problems	207
VI.	CO	MPACT AND LOCALLY COMPACT GROUPS	212
	1.	Topological Groups	213
	2.	Existence and Uniqueness of Haar Measure	220
	3.	Modular Function	230
	4.	Invariant Measures on Quotient Spaces	234
	5.	Convolution and L^p Spaces	237
	6.	Representations of Compact Groups	240
	7.	Peter–Weyl Theorem	251
	8.	Fourier Analysis Using Compact Groups	256
	9.	Problems	264
VII.	ASP	PECTS OF PARTIAL DIFFERENTIAL EQUATIONS	275
	1.	Introduction via Cauchy Data	275
	2.	Orientation	283
	3.	Local Solvability in the Constant-Coefficient Case	292
	4.	Maximum Principle in the Elliptic Second-Order Case	296
	5.	Parametrices for Elliptic Equations with Constant Coefficients	300
	6.	Method of Pseudodifferential Operators	305
	7.	Problems	317

Contents	

VIII. ANALYSIS ON MANIFOLDS 321				
	1.	Differential Calculus on Smooth Manifolds	322	
	2.	Vector Fields and Integral Curves	331	
	3.	Identification Spaces	334	
	4.	Vector Bundles	338	
	5.	Distributions and Differential Operators on Manifolds	348	
	6.	More about Euclidean Pseudodifferential Operators	355	
	7.	Pseudodifferential Operators on Manifolds	361	
	8.	Further Developments	366	
	9.	Problems	370	
IX.	FOU	UNDATIONS OF PROBABILITY	375	
	1.	Measure-Theoretic Foundations	375	
	2.	Independent Random Variables	381	
	3.	Kolmogorov Extension Theorem	386	
	4.	Strong Law of Large Numbers	393	
	5.	Problems	399	
	Hints for Solutions of Problems		403	
	Selected References		451	
	Index of Notation		455	
	Inde.	x	459	