MATHEMATICAL METHODS IN ELECTROMAGNETISM

Linear Theory and Applications

Michel Cessenat

CEA/DAM
Centre d'Etudes de Bruyères-le-Châtel
France

Contents

Chapter 1 - Mathematical Modelling of the Electromagnetic Field in	
Continuous Media: Maxwell Equations and Constitutive Relations	1
I - Evolution Maxwell Equations	. 1
2 - Stationary Maxwell Equations	4
3 - Constitutive Relations	7
3.1 - Linear isotropic dielectric media	7
3.2 - Linear anisotropic dielectric media	20
3.3 - Linear chiral media	22
3.4 - Nonlinear constitutive relations	23
Chapter 2 - Mathematical Framework for Electromagnetism	26
I - Spaces for curl and div: Trace Theorems	28
2 - Jump Formulas Across a Bounded Hypersurface Γ in R ^a	32
3 - Differential Operators on a Regular Surface T	33
4 - The spaces H - 1/2 (div, Γ), H - 1/2 (curl, Γ). Trace for H(curl, Ω)	35
4 - The spaces $H^{-1/2}(div,\Gamma)$, $H^{-1/2}(curl,\Gamma)$. Trace for $H(curl,\Omega)$	40
6 - Some Complementary Results. Polar Sets	41
7 - Traces on a Sheet	42
7.1 - Trace problems on sheets (the scalar case)	
7.2 - Trace problems on sheets (the vectorial case)	46
8 - Some Regularity Results	
9 - The Hodge Decomposition	
10 - Interpolation Results	57
11 - Some Variational Frameworks	
11.1 - Variational frameworks based on H(curl, Ω) spaces	58
11.2 - Variational frameworks based on $H^1(\Omega)^3$ and the Laplacian	60
12 - First Problems with Inhomogeneous Boundary Conditions	62
12.1 - Problems with H ^{-1/2} (div,Γ) boundary conditions	62
12.2 - Problems with H ^{1/2} (Γ) boundary conditions	66
13 - Boundary Problems of Cauchy Type. Uniqueness Theorems	67
14 - Whitney Elements; Numerical Treatment	68
Chapter 3 - Stationary Scattering Problems with Bounded Obstacles	71
1 - Stationary Waves due to Sources in Bounded Domains	71
1.1 - The main properties for Helmholtz equation in R3	71
1.1.1 - Local regularity properties	72
1.1.2 - Outgoing and incoming Sommerfeld conditions	72
1.1.3 - Elementary outgoing (incoming) solution	73
1.1.4 - Fundamental properties. 1.2 - The main properties for Maxwell equations in R ³	73
1.2 - The main properties for Maxwell equations in R ³	75
1.2.2 - The Silver-Müller conditions	79
	10

1.3 - Transmission problems and surface integral operators	80
1.3.1 - Helmholtz problems with charges on "regular surfaces"	80
1.3.2 - Maxwell problems with currents on "regular surfaces"	85
1.3.3 - Some regularity results	90
1.3.4 - Integral method for a sheet	92
1.3.5 - Incoming waves	
2 - Scattering Problems with a Complex Wavenumber.	
Limiting Absorption Principle	98
2.1 - Helmholtz equation in R ³ for a complex wavenumber	98
2.2 - Maxwell equations with complex coefficients	
2.3 - The Calderon projectors for a complex wavenumber	
3 - Vector Helmholtz Equation, Knauff-Kress Conditions	102
3.1 - Knauff-Kress conditions at infinity	
3.2 - Vector Helmholtz problems with jumps conditions	
4 - Boundary Problems with a Real Wavenumber	103
4.1 - Limiting absorption principle	
4.2 - Exterior boundary problems	
4.3 - Some consequences; the exterior Calderon operator	100
4.4 - Interior boundary problems	
4.5 - Some consequences; the interior Calderon operator	
4.6 - Integral equations and boundary problems	
4.7 - Some consequences for the integral operators	
4.8 - On the numerical solution of some scattering problems	110
Scattering Problems by a Dielectric Obstacle	
5.1 - A general variational formulation	
5.2 - Solution using an integral method	
5.3 - Behavior at infinity. Radar cross section. Optical theorem	
6 - Scattering and Influence Coefficients for Several Obstacles	127
6.1 - Decomposition of the trace spaces	128
6.2 - Screen effect, Extinction theorem	
6.3 - Coefficients of mutual influence of antennas	
7 - Mutual Influence of Sheets	
7.1 - Introduction	
7.2 - Electromagnetic fields due to currents on a sheet	
7.3 - Matrix elements; influence coefficients	
8 - Fields due to Currents on a Line	133
9 - Scattering Problems by a Chiral Obstacle	136
10 - Conclusion on the Calderon Operators for Scattering Problems	138
11 - Multipole Expansions. Rayleigh Series	142
Multipole Expansions. Rayleigh Series H.1 Multipole expansions for Helmholtz in R ² H.2 Multipole expansions for Helmholtz in R ²	142
11.2 - Multipole expansions for Helmholtz in R ³	143
11.3 - The source of a wave u_	147
11.4 - Multipole expansions and analytical functionals	152
11.5 - Multipole expansions for the electromagnetic field	156

CONTENTS XI

12 - Scattering by a Dielectric Ball	159
12.1 - Scattering with Helmholtz equation	159
12.2 - Scattering with Maxwell equations	161
13 - Addendum. Compactness Properties in Scattering Problems	166
Chapter 4 - Waveguide Problems	167
1 - Waveguides with Helmholtz equations	167
2 - Waveguides in electromagnetism	
Chapter 5 - Stationary Scattering Problems on Unbounded Obstacles	187
I - Plane Geometry	187
1.1 - Plane geometry with Helmholtz equation	187
1.1.1 - Helmholtz problem in a half-space with Dirichlet condition	187
1.1.2 - Transmission Helmholtz problems in R ³	. 193
1.1.3 - Transmission problem with two different media	195
1.1.4 - Some examples of applications of the Calderon operator	108
1.2 - Plane geometry with Maxwell equations	
1.2.1 - A typical problem in a half-space	200
1.2.2 - Scattering problems with two different media	206
1.3 - The slab	
1.3.1 - The scalar case with Helmholtz equation.	210
1.3.2 - The slab with Maxwell equations	
2 - Periodic Geometry: 2D Gratings	
2.1 - Periodic Geometry; 2D Gratings 2.1 - Periodic geometry with Helmholtz equation	
2.2 - An integral method for gratings	. 223
2.3 - Periodic geometry with Maxwell equations	. 221
2.3.1 - Mathematical framework	
2.3.2 - The Calderon operator	. 228
2.3.3 - Some scattering problems	. 230
3 - Conical Geometry	235
3.1 - Properties of some unbounded operators associated to A	
3.2 - Solution of Helmholtz problems	
Chapter 6 - Evolution Problems	. 251
1 - Cauchy Problems	
1.1 - Scalar wave Cauchy problems	. 252
1.2 - Cauchy problems in electromagnetism	. 254
1.2.1 - Cauchy problems in free space R ³	. 254
1.2.2 - Cauchy problems in a domain Ω	. 255
1.3 - Some hyperbolic properties of wave evolution	. 256
1.4 - Radon transforms	. 258
1.5 - First applications of the Radon transform method	. 262
2 - Scattering Problems - Incoming and Outgoing Waves	. 264
2.1 - Another application of the Radon transformation	. 264
2.2 - Incoming and outgoing waves in electromagnetism	267

XII CONTENTS

2.3 - Incoming and outgoing waves with a bounded obstacle	265
- Causal Problems	276
3.1 - Some examples with the wave equation	
3.1.1 - A typical example of causal problem	
3.1.2 - An example with boundary conditions	
3.1.3 - An example with transmission conditions, integral method	is 280
3.1.4 - An example with a waveguide	284
3.2 - Some examples with Maxwell equations.	286
3.2.1 - Causal Maxwell problems in the whole space	
3.2.2 - Causal problems with currents on a surface	
3.2.3 - Causal Maxwell problems with boundary conditions	289
3.2.4 - A causal waveguide problem	
3.2.5 - Uniqueness at most	294
Appendix - Differential Geometry for Electromagnetism	296
- Introduction. Mathematical Framework	
1.1 - Manifold with boundary	
1.2 - Riemannian manifold M with or without boundary	
1.3 - Definition of the codifferential	304
1.4 - The gradient, divergence and Laplace-Beltrami operator	
1.5 - Decomposition of the space of tangent p-vectors	306
1.6 - Currents; generalized r-forms (or distribution r-forms)	
1.7 - Application: Jump formula of exterior derivative	
2 - Sobolev Spaces of r-forms; Maxima Spaces	
3 - The Hodge Decomposition for a Compact Manifold with Boundary	
3.1 - Variational frameworks for the Laplace-Beltrami operator	
3.2 - Variational frameworks for the operators do and od	
4 - The Hodge Decomposition for a Compact Manifold without Boundar	y 333
5 - The Hodge Decomposition in L ² for Unbounded Manifolds	337
5.1 - The Hodge decomposition for L ² _r (R ⁿ) 5.2 - The Hodge decomposition for L ² _r (M)	337
5.2 - The Hodge decomposition for L ² (M)	340
5.3 - Comparison between the cohomology of M, its complement and its boundary	
- Application to 3-dimensional and 2-dimensional Cases	344
6.1 - The 3-dimensional case	244
6.2 - The 3-dimensional case	247
- Maxwell Equations with Differential Forms.	34/
7.1 Maymell assisting in B3	261
7.1 - Maxwell equations in R ³ 7.2 - Maxwell equations in R ⁴	351
7.3 - Transformation laws. Lorentz and evolution transformations	331
References	
ndex	373