Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains

Volume II

Vladimir Maz'ya Serguei Nazarov Boris Plamenevskij

Translated from the German by Boris Plamenevskij

Authors:

Vladimir Maz'ya

Department of Mathematics Linköping University

58183 Linköping

Sweden

e-mail: vlmaz@mai.liu.se

Serguei Nazarov

Laboratory of Mathematical Methods in Mechanics of Solids Institute of Mathematics and Mechanics St. Petersburg University

St. Petersburg University Bibliotechnaya pl. 2 198904 St. Petersburg

Russia

e-mail: serna@snark.ipme.ru

Boris A. Plamenevskij

Department of Mathematical Physics

Faculty of Physics

St. Petersburg State University

Ulyanova 1 Stary Petershof

198904 St. Petersburg

Russia

e-mail: Boris.Plamenevskij@pobox.spbu.ru

Originally published by Akademie Verlag GmbH, Leipzig, Germany, under the title "Asymptotische Theorie Elliptischer Randwertaufgaben in singulär gestörten Gebieten".

© 1991 by Akademie Verlag

2000 Mathematics Subject Classification 35B25, 35J25; 73B27, 35B40, 73C02, 35J40

A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA

Deutsche Bibliothek Cataloging-in-Publication Data

Maz'ja, Vladimir G.:

Asymptotic theory of elliptic boundary value problems in singularly pertubed domains / Vladimir Maz'ya; Serguei Nazarov; Boris Plamenevskij. Transl. from the German by Boris Plamenevskij

- Basel; Boston; Berlin: Birkhäuser

Einheitssacht.: Asimptotika rešenij elliptičeskich kraevych zadač pri singuljarnych vozmuščenijach

oblasti <dt.>

ISBN 978-3-0348-9564-4 ISBN 978-3-0348-8432-7 (eBook) DOI 10.1007/978-3-0348-8432-7

Vol. 2. – (2000)

(Operator theory; Vol. 112) ISBN 978-3-0348-9564-4

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained.

© 2000 Springer Basel AG

Originally published by Birkhäuser Verlag, Basel - Boston - Berlin in 2000 Softcover reprint of the hardcover 1st edition 2000

Printed on acid-free paper produced from chlorine-free pulp. $TCF \infty$

Cover design: Heinz Hiltbrunner, Basel

ISBN 978-3-0348-9564-4

XIV Contents

Volu	ıme II		
Pref	ace		XXI
	ndary V	Talue Problems in Domains Perturbed Near sional Singularities of the Boundary	
Chap	pter 11	Boundary Value Problems in Domains with Edges on the Boundary	ary
	11.1.1 11.1.2 11.1.3 The Ne	Statement of the problem	3 3 4 8 9
	11.2.1 11.2.2 11.2.3 11.2.4	Statement of the problem	9 10 14 15
11.3		Problems for the Laplace Operator	15 15 16 18
11.4	Sobolev 11.4.1 11.4.2 11.4.3	v Problems Statement of the problem Solvability of the problem Asymptotics of a solution	19 19 19 20
Chap	oter 12	Asymptotics of Solutions to Classical Boundary Value Problems in a Domain with Thin Cavities	
12.1		Symptotics of a Solution of the Neumann Problem Exterior of a Thin Tube	23 23 24 30
12.2		symptotics of Solutions to the Dirichlet Problem Exterior of a Thin Tube	35 35 36 39

12.2.4 Asymptotics of the capacity of a thin

toroidal domain

41

Contents	XV

12.3	Stress a	and Strain State of the Space with a Thin	
		al Inclusion	42
	12.3.1	Statement of the problem	42
	12.3.2	Preliminaries	42
	12.3.3	Asymptotics of the solution	45
12.4		totics of Solutions to the Dirichlet Problem	
	in a Pl	ane Domain with a Thin Cavity	48
	12.4.1	Statement of the problem	48
	12.4.2	A cavity whose shores encounter each other at zero angles	48
	12.4.3	A thin cavity with smooth boundary	50
	12.4.4	A remark on application of the results of Chapter 4	54
12.5	Asymp	totics of Solutions to the Dirichlet Problem	
	in a Th	aree-dimensional Domain with a Thin Cavity	55
	12.5.1	Statement of the problem	56
	12.5.2	Asymptotics of the solution in the exterior of \bar{Q}_{ε}	56
	12.5.3	The two-dimensional boundary layer	57
	12.5.4	Construction of the function γ	58
	12.5.5	Boundary layer near the endpoints of segment M	
	12.5.6	(the first term)	61
	12.5.0	Boundary layer near the endpoints of the segment M (the second term)	CO.
	12.5.7	Justification of the asymptotics	63
	12.5.8	Asymptotics of capacity of the "ellipsoid" Q_{ε}	$\frac{65}{68}$
	12.5.9	The case of a rotation ellipsoid $\mathcal{Q}_{\varepsilon}$	69
12.6		ning the Boundary Near an Edge	
12.0	12.6.1	The domain	70 71
	12.6.2	The principal term of asymptotics	71 72
	12.6.3	The complete asymptotic expansion	73
			10
Chap	pter 13	Asymptotics of Solutions to the Dirichlet Problem for High	
		Order Equations in a Domain with a Thin Tube Excluded	
		ent of the Problem	76
		se of Noncritical Dimension	77
13.3	The Ca	ase of Critical Dimension (Expansion in $(\log \varepsilon)^{-1}$)	81
13.4	The Ca	ase of Critical Dimension (Expansion in Powers of ε)	88
	13.4.1	Structure of the asymptotic expansion	88
	13.4.2	Structure of the formal series (1)	89
	13.4.3	Asymptotic inversion of the operator	
	10	$A_1 \log \varepsilon + A_2 + \tilde{A}$	91
	13.4.4	The power asymptotic series for the solution	95
	13.4.5	More on the Dirichlet problem for the Laplace	
		operator in the exterior of a tube	98

XVI Contents

Part VI			
Behaviour of Solutions of Boundary	Value Problems	in Thin	Domains

Cha	pter 14	The Dirichlet Problem in Domains with Thin Ligaments	
14.1	The Pr 14.1.1	Statement of the problem (the case of two points	105
	14.1.2 14.1.3	on smooth surfaces approaching each other)	105 105 109
14.2	Comple 14.2.1 14.2.2	ete Asymptotic Expansions of Solutions	111 111 114
14.3	Asymp 14.3.1 14.3.2	totics of Solutions for Nonsmooth Right-hand Side Terms	114 114 116
14.4	Ligame 14.4.1 14.4.2	ents of a Different Form	120 120 122
14.5	Asymp 14.5.1 14.5.2 14.5.3	totics of the Condenser Capacity	124 124 126 128
Chaj	pter 15	Boundary Value Problems of Mathematical Physics in Thin Dom	ains
15.1	Bounda	ary Value Problems for the Laplace Operator	
		nin Rectangle	131
	15.1.1 15.1.2 15.1.3	Asymptotics of solution to the Dirichlet problem	131 132 133
15.2	Bounda	rincipal Term in Asymptotics of the Solution to a ary Value Problem for a System of Second Order Equations	
		Vlinder of Small Height	136 136
	15.2.1 $15.2.2$	Auxiliary constructions	138
	15.2.3	Asymptotics of the solution	140
	15.2.4	Properties of the limit operator	142
	15.2.5	Unique solvability of the limit problem	143
	15.2.6	Justification of the asymptotic expansion of the solution	145
15.3		ations of Theorem 15.2.9 to Particular Boundary Problems	149
15.4	Antipla	anar Shear and Flow of an Ideal Fluid in a Thin Domain	
	with a	Longitudinal Cut	153
	15.4.1	Cr + C+1 11	153
	15.4.1 $15.4.2$	Statement of the problem	153

Contents	XVII

	15.4.4	A supplementary limit problem and asymptotics	
		of the intensity factor	157
	15.4.5	The three-dimensional case	158
	15.4.6	Examples	159
15.5	Intensi	ty Factors for Close Parallel Cracks	161
	15.5.1	Statement of the problem	161
	15.5.2	Asymptotics of the solution inside and outside	101
		the strip between cracks	162
	15.5.3	Boundary layers near tips of the cut	163
	15.5.4	Estimate on the remainder in asymptotics	166
	15.5.5	Asymptotics of the intensity factors	166
	15.5.6	Shifted cracks	168
CI.			
		General Elliptic Problems in Thin Domains	
16.1		Problems	171
	16.1.1	Statement of the problem	171
	16.1.2	Structure of differential operators	172
	16.1.3	The ellipticity condition	173
	16.1.4	The first limit problem	174
	16.1.5	The second limit problem	175
	16.1.6	The third limit problem	177
16.2	Asymp	totics of Solutions	180
	16.2.1	The Fredholm property of the original problem	180
	16.2.2	The case when limit problems are uniquely solvable	182
	16.2.3	Solutions to the third limit problem	185
	16.2.4	Asymptotics in the case when $K + K^k > 0$	188
16.3	Examp	les	192
		g of a Thin Plate	197
	16.4.1	Statement of the problem	197
	16.4.2	The first two limit problems	197
	16.4.3	The complementary limit problem	198
	16.4.4	The boundary layer	199
	16.4.5	Boundary conditions in the third limit problem	206
	16.4.6	Asymptotics of the solution	206
Part	VII		
		ndary Value Problems with Oscillating Coefficients	
		of Domain	
or D	oundar y	of Domain	
Chap	oter 17	Elliptic Boundary Value Problems with Rapidly Oscillating Coefficients	
17.1	Homog	enization of Differential Equation	211
	17.1.1	Statement of the problem	211
	17.1.2	The limit problem in the cell	$\frac{211}{212}$
	17.1.3	The homogenized equation	213
	17.1.4	Asymptotic series	$\frac{215}{215}$

XVIII Contents

17.2	Bounda 17.2.1 17.2.2	The boundary value problem for the boundary layer	216 216 218
17.3		ary Layer for the Neumann Problem	$\frac{210}{222}$
		ation of Asymptotic Expansions	226
			220
17.5	-	Boundary Value Problems with Periodic Coefficients	229
	17.5.1	Model problem in a cylinder	$\frac{229}{229}$
	17.5.2	Problem with complex parameter	230
	17.5.3	Analog of the Fourier transform	231
	17.5.4	Unique solvability of the model problem	233
	17.5.5	Asymptotics of solutions	234
Chap	oter 18	Paradoxes of Limit Passage in Solutions of Boundary Value Problems When Smooth Domains Are Approximated by Polygon	ns
18.1	Approx	cimation to a Freely Supported Convex Plate	238
	18.1.1	Statement of the problem and description of the results	238
	18.1.2	Formal asymptotics	239
	18.1.3	Justification of the asymptotics	243
10.0	18.1.4	Concentrated moments at the vertices of the polygon	247
18.2		cimation of a Hole in a Freely Supported Plate	249 249
	18.2.1 18.2.2	Statement of the problem	249
	10.2.2	with a polygonal hole	250
	18.2.3	Point moments at the vertices of the polygon	252
18.3	Passage	e to Conditions of Rigid Support	254
Chap	oter 19	Homogenization of a Differential Operator on a Fine Periodic Net of Curves	
19.1	Statem	ent of the Problem on a Net	259
	19.1.1	The net S	259
	19.1.2	The net S_{ε}	260
19.2	The Pr	incipal Term of Asymptotics	261
		The formal asymptotics	261
	19.2.2	Justification of the asymptotics	262
	19.2.3	Asymptotics of solutions to nonstationary problems	266
19.3	-	tation of Coefficients of the Homogenized Operator	
	and Th	eir Properties	267
	19.3.1	Definition of coefficients of the homogenized operator	267
	19.3.2	Ellipticity of the homogenized operator	269
46 :	19.3.3	Examples of homogenized operators	270
19.4		omplete Asymptotic Expansion	273
	19.4.1	Asymptotic solution outside a neighborhood of the boundary	273
	19.4.2	Construction of the boundary layer	$\frac{273}{274}$
		Definition of constants in the boundary layer	276

Contents	XIX
----------	-----

19.5		totics of the Solution to a Boundary Value Problem	
	on a No 19.5.1	et Located in a Cylinder The boundary value problem in a cylinder	278 278
	19.5.1 $19.5.2$	The boundary value problem in a cylinder	279
		Asymptotic expansion of solutions to the problem	
		in a cylinder	280
Chaj	pter 20	Homogenization of Equations on a Fine Periodic Grid	
20.1	Homog	enization of Difference Equations	283
	20.1.1	A grid in \mathbb{R}^n and the interaction set of its points	283
	20.1.2	Statement of the problem	284
	20.1.3	Solvability of the boundary value problem	285
	20.1.4	The leading terms in asymptotics	286
	20.1.5	Asymptotics of the solution to the	200
		nonstationary problem	288
20.2		ation of Coefficients of the Homogenized Operator	200
		neir Properties	288
20.3		lline Grid	291
	20.3.1	Equations of the elasticity theory	291
	20.3.2	Examples of homogenized operators	293
		on Parts V-VII	
		on Part V	297
	•		297
	-		297
	_		297
		on Part VI	298
	•		298
			298
	_		298
		on Part VII	298
	-		298
	•		299 299
	-		299
	-		
List	of Sym	bols	301
Refe	erences		305
Inde	e x		321