Existentially Closed Groups

Graham Higman Mathematical Institute, University of Oxford

and

Elizabeth Scott
Department of Mathematics,
The Australian National University

Contents

Notation and conventions

1.	Introduction Definitions; Elementary embedding theorems; Basic results on existentially closed groups; SQ-universal groups; Local systems.	1
2.	Centralizers and normalizers of subgroups Maximal subgroups; Centralizers of intersections; Normalizers of subgroups and characteristically simple subgroups; Quotients of certain maximal subgroups by simple subgroups.	9
3.	ω-Homogeneous groups Definitions; Classes of groups and the properties SC, JEP, AEP, AC; A countable locally finitely presented existentially closed group.	25
4.	Recursion theory Definitions; 1-1 reducibility; $X \vee Y$; Rel (a_1, \ldots, a_r) and Rel (G) ; Enumeration reducibility; Equivalence classes and ideals; The group M_X ; Partial recursive functions and machines; Strongly creative and 1-complete sets; Turing reducibility and positive reducibility; The group G_X ; Ziegler reducibility; Consistent sets.	34
5.	Applications of The Subgroup Theorem Systems of equations, inequalities, and implications; Groups obtained by imposing solutions of sets of equations and implications; Solutions of recursively enumerable sets of equations, inequalities, and implications; Skeletons and Ziegler reducibility; Finitely generated groups with solvable word problem; Direct products and wreath products.	55
6.	The Relative-Subgroup Theorem Groups which are finitely presented over other groups; Solutions of sets of equations in relatively finitely presented groups; Relatively universal finitely generated subgroups of existentially closed groups.	71
7.	Games Definitions; Codes of rules; Enforceability; Equivalence of codes of rules; Enforceable group properties; The existence of 2% distinct countable existentially closed groups.	82

xi

X	Content
X	Conten

8.	Free products	102
	The set $s(X)$ and Ziegler reducibility.	
9.	First-order theory of existentially closed groups	110
	§9.1. Introduction	110
	First-order languages; Formulae; Sentences; Truth values; Models; First-order theories of groups; Gödel's Compactness Theorem.	
	§9.2. Existentially closed groups and first-order theory	112
	Groups with the same theory; Elementary classes.	
	§9.3. Stable evaluation	117
	∀ _n -formulae and ∃ _n -formulae; fg-complete groups; Stable evaluation of formulae; Stably true sentences; Examples.	
	§9.4. Arithmetically related groups	126
	Arithmetic sets; Levels; Groups whose relation sets are arithmetic and first-order formulae.	
	§9.5. Generic theory	140
	R -generic theories and groups; Stable rules and stable truth; (\emptyset, \emptyset) -generic and stable-generic existentially closed groups; Generic groups and arithmetically related groups; Sentences in generic groups.	
Bil	bliography	153
Inc	lex	155