TWO-DIMENSIONAL GEOMETRIC VARIATIONAL PROBLEMS

Jürgen Jost Ruhr-Universität Bochum Fakultät und Institut für Mathematik Germany

A Wiley-Interscience Publication

JOHN WILEY & SONS

Chichester · New York · Brisbane · Toronto · Singapore

CONTENTS

Introduction

1.	Examples, definitions, and elementary results	1
	1.1. Plateau's problem	1
	1.2. Two-dimensional conformally invariant variational problems	7
	1.3. Harmonic maps, conformal maps, and holomorphic quadratic differentials	20
	1.4. Some applications of holomorphic quadratic differentials. Surfaces in \mathbb{R}^3 . The Gauss map	23
2.	Regularity and uniqueness results	32
	2.1. Harmonic coordinates	32
	2.2. Uniqueness of harmonic maps	33
	2.3. Continuity of weak solutions	37
	2.4. Removability of isolated singularities	54
	2.5. Higher regularity	62
	2.6. The Hartmann-Wintner Lemma and some of its consequences. Asymptotic expansions at branch points	69
	 Estimates from below for the functional determinant of univalent harmonic mappings 	75
3.	Conformal representation	85
	3.1. Conformal representation of surfaces homeomorphic to S ²	85
	 Conformal representation of surfaces homeomorphic to circular domains 	93
	3.3. Conformal representation of closed surfaces of higher genus	96
4.	Existence results	106
	4.1. The local existence theorem for harmonic maps. An easy proof	106

vii

vi Contents

	4.2. The general existence theorem. First part of the proof	113
	4.3. Completion of the proof of Theorem 4.2.1	125
	4.4. Corollaries and consequences of the general existence theorem. Boundary conditions	135
	4.5. Non-existence results. Existence of maps with holomorphic quadratic differentials	150
	4.6. Another proof of the existence of unstable minimal surfaces	154
	4.7. The Plateau-Douglas problem in Riemannian manifolds	161
5.	Harmonic maps between surfaces	173
	5.1. The existence of harmonic diffeomorphisms	173
	5.2. Local computations. Consequences for non-positively curved	182
	image metrics. Harmonic diffeomorphisms. Kneser's Theorem	102
	5.3. Miscellaneous results about harmonic branched coverings and	188
	harmonic diffeomorphisms	
6.	Harmonic maps and Teichmüller spaces	191
	6.1 The basic definitions	191
	6.2. The topological and differentiable structure of T_p . Teichmüller's Theorem	193
	6.3. The complex structure	201
	6.4. The energy as a function of the domain metric	204
	6.5. The metric structure. The Weil-Petersson metric. Kähler property. The curvature	210
	Appendix. Remarks on notation and terminology	222
	References	227
	Index	235