ELEMENTARY MATRIX THEORY

Howard Eves

Professor Emeritus of Mathematics University of Maine at Crono

Dover Publications, Inc. New York

CONTENTS

P	REFACE	vii
0. P	ROLEGOMENON	1000
0.	SIGNIFICANT ORDERED RECTANGULAR ARRAYS OF NUMBERS	
PR	OBLEMS	1
		5
PR	ALGEBRAS OF ORDERED ARRAYS OF NUMBERS	7
	DELEMS	12
I. FU OP	NDAMENTAL CONCEPTS AND ERATIONS	
1.1	S MATRICES, # MATRICES, AND & MATRICES	
1.2	ADDITION AND SCALAR MULTIPLICATION OF MATRICES	14
PRO	BLEMS	16
1.3	CAVLEY MULTIPLES	18
	CAYLEY MULTIPLICATION OF MATRICES	19

x CONTENTS

PRO	BLEMS	23
	SOME SPECIAL MATRICES	25
700	BLEMS	29
1.5	TRANSPOSITION	30
1.6	SYMMETRIC AND SKEW-SYMMETRIC MATRICES	31
	BLEMS	33
1.7	CONJUGATION AND TRANJUGATION	33
	HERMITIAN AND SKEW-HERMITIAN MATRICES	35
PRO	DBLEMS	37
1.9	PARTITIONED MATRICES	37
PRO	DBLEMS	41
AD	DDENDA	
1.1	A LINEAR TRANSFORMATIONS	43
1.2	A BILINEAR, QUADRATIC, AND HERMITIAN FORMS	44
	A A MATRIX APPROACH TO COMPLEX NUMBERS	46
1.4	A A BUSINESS APPLICATION	48
1.5	A ENUMERATION OF k-STAGE ROUTES	49
1.6	A APPLICATION TO MATHEMATICAL SYSTEMS	51
1.7	A JORDAN AND LIE PRODUCTS OF MATRICES	53
1.8	A SQUARE ROOTS OF MATRICES	56
1.9	A PRIMITIVE FACTORIZATION OF MATRICES	57
. EC	QUIVALENCE	
2.1	ROW EQUIVALENCE OF MATRICES	5
PR	OBLEMS	6
2.2	2 NONSINGULAR MATRICES	6

CONTENTS	xi	ĺ
----------	----	---

NTENTS		xi
PROE	BLEMS	68
2.3	COLUMN EQUIVALENCE OF MATRICES	70
2.4	EQUIVALENCE OF MATRICES	72
PROE	BLEMS	74
2.5	LINEAR DEPENDENCE AND INDEPENDENCE OF A SET OF VECTORS	75
2.6	ROW RANK AND COLUMN RANK OF A MATRIX	77
PROF	BLEMS	79
2.7	RANK OF A MATRIX	81
PROF	BLEMS *	84
2.8	APPLICATION TO THE SOLUTION OF SYSTEMS OF LINEAR EQUATIONS	86
PROF	BLEMS	90
2.9	LINEARLY INDEPENDENT SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS	92
PROF	BLEMS	97
ADI	DENDA	
2.1A	LEFT AND RIGHT INVERSES	98
2.2A	SOME FURTHER METHODS OF MATRIX INVERSION	99
2.3A	LINEAR DEPENDENCE AND INDEPENDENCE OF A SET OF MATRICES	102
2.4A	LINES IN A PLANE AND PLANES IN SPACE	103
2.5A	AN AFFINE CLASSIFICATION OF CONICS AND CONICOIDS ACCORDING TO THE RANKS OF THEIR ASSOCIATED MATRICES	104
2.6A	KRONECKER PRODUCT OF MATRICES	107
2.7A	DIRECT SUM OF MATRICES	107

xii CONTENTS

109

3. DETERMINANTS

3.1 PERMUTATIONS

3.2	THE NOTION OF DETERMINANT	111
PRO	BLEMS	112
3.3	SOME ELEMENTARY PROPERTIES OF DETERMINANTS	114
PRO	BLEMS	117
3.4	COFACTORS	119
PRO	BLEMS	123
3.5	CYCLIC DETERMINANTS AND VANDERMONDE DETERMINANTS	125
PRO	BLEMS	127
3.6	CHIO'S EXPANSION	129
	APPENDIX	133
PRO	BLEMS	134
3.7	LAPLACE'S EXPANSION	136
PRO	BLEMS	139
3.8	THE PRODUCT THEOREM	140
PRO	BLEMS	145
3.9	DETERMINANT RANK OF A MATRIX	148
PRO	BLEMS	152
3.10	ADJOINT OF A SQUARE MATRIX	153
PRO	BLEMS	157
AD	DENDA	
3.1.	A A GEOMETRIC STUDY OF PERMUTATIONS	160
3.2	A PERMUTATION MATRICES	163

CONTENTS	xiii
----------	------

3.3/	A PERMANENTS	163
3.4/	A POSTULATIONAL DEFINITIONS OF DETERMINANT	165
3.5/	THE SWEEP-OUT PROCESS FOR EVALUATING DETERMINANTS	165
3.64	PFAFFIANS	167
3.7/	SOCUTION OF SYSTEMS OF LINEAR EQUATIONS	169
3.84	CONTINUANTS	172
3.9/	A AN APPLICATION OF DETERMINANTS TO TRIANGLES AND TETRAHEDRA	173
3.10	A QUANTITATIVE ASPECT OF LINEAR INDEPENDENCE OF VECTORS	174
3.11	A SYLVESTER'S DIALYTIC METHOD OF ELIMINATION	178
MA	TRICES WITH POLYNOMIAL ELEMENTS	
4.1	REVIEW OF SOME POLYNOMIAL THEORY	179
PRO	BLEMS	183
4.2	LAMBDA MATRICES	184
PRO	BLEMS	189
4.3	THE SMITH NORMAL FORM	190
PRO	BLEMS	194
4.4	INVARIANT FACTORS AND ELEMENTARY DIVISORS	195
PRO	BLEMS	198
4.5	THE CHARACTERISTIC FUNCTION OF A SQUARE MATRIX	199
PRO	BLEMS	202
4.6	SOME RESULTS RELATED TO THE CHARACTERISTIC FUNCTION OF A SOLUARE MATRIX	204

xir CONTENTS

	PROB	LEMS	206
	4.7	CHARACTERISTIC VECTORS OF A SQUARE MATRIX	207
	PROB	LEMS	209
	4.8	THE MINIMUM FUNCTION OF A SQUARE MATRIX	210
	PROB	LEMS	213
	4.9	FINDING THE MINIMUM FUNCTION OF A SQUARE MATRIX	213
	PROB	LEMS	216
	ADD	DENDA	
	4.1A	ELEMENTARY λ MATRICES	217
	4.2A	SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS	218
	4.3A	EQUIVALENCE OF PAIRS OF MATRICES	218
	4.4A	k TH ROOTS OF NONSINGULAR MATRICES	219
	4.5A	THE COEFFICIENTS IN THE CHARACTERISTIC FUNCTION	220
	4.6A	COMPUTATION OF \mathcal{A}^{-1} BY THE HAMILTON-CAYLEY EQUATION	220
	4.7A	FRAME'S RECURSION FORMULA FOR INVERTING A MATRIX	221
	4.8A	CHARACTERISTIC ROOTS OF A POLYNOMIAL FUNCTION OF A MATRIX 4	221
5.	SIMI	LARITY AND CONGRUENCE	
	5.1	SIMILAR MATRICES	222
	PROB	LEMS	225
	5.2	SIMILAR MATRICES (CONTINUED)	226

CONTENTS	xv

CONTENTS	2 5	xv
PROF	RLEMS	230
1,17	CONGRUENT MATRICES	230
	BLEMS	233
5337	CANONICAL FORMS UNDER CONGRUENCY FOR	233
5.4	SKEW-SYMMETRIC & MATRICES	235
PROF	BLEMS	237
5.5	CANONICAL FORMS UNDER CONGRUENCY FOR SYMMETRIC & MATRICES	237
PROI	BLEMS	241
5.6	CONJUNCTIVITY, OR HERMITIAN CONGRUENCE	242
PROF	BLEMS	245
5.7	ORTHOGONAL MATRICES AND ORTHOGONAL SIMILARITY	246
PROP	BLEMS	252
5.8	UNITARY MATRICES AND UNITARY SIMILARITY	253
PROI	BLEMS	258
5.9	NORMAL MATRICES	259
PROB	BLEMS	262
ADI	DENDA	
5.1A	COMPANION MATRICES	263
5.2A	REGULAR SYMMETRIC MATRICES	264
5.3A	ROTATIONS IN 3-SPACE	264
5.4A	CAYLEY'S CONSTRUCTION OF REAL ORTHOGONAL MATRICES	265
5.5A	THE CHARACTERISTIC ROOTS OF AN ORTHOGONAL MATRIX	267
5.6A	DEFINITE, SEMIDEFINITE, AND INDEFINITE REAL SYMMETRIC MATRICES	269

CU	CONTENTS

	5.7A	GRAM MATRICES	270
	5.8A	SOME THEOREMS OF AUTONNE	27
	5.9A	SIMULTANEOUS REDUCTION OF A PAIR OF QUADRATIC FORMS	277
	5.10	A HADAMARD MATRICES	273
	5.11	A EQUITABLE MATRICES	274
6.	TOV	VARD ABSTRACTION	
	6.1	NUMBER RINGS AND NUMBER FIELDS	276
3	PROB	ILEMS	279
	6.2	GENERAL RINGS AND GENERAL FIELDS	281
į.	PROB	LEMS	284
-	6.3	MATRIX REALIZATION	286
	PROB	LEMS	289
	6.4	k-vector spaces over a field F	291
9	PROB	LEMS	293
	6.5	GENERAL VECTOR SPACES	294
1	PROB	LEMS	297
	6.6	LINEAR TRANSFORMATIONS OF VECTOR SPACES	297
1	PROB	LEMS	303
	6.7	JORDAN AND LIE ALGEBRAS	304
1	PROB	LEMS	305
7. 1	EPII	EGOMENON	307
1	віві	JOGRAPHY	310
1	IND	EX	315