## Lecture Notes in Mathematics

Edited by A. Dold and B. Eckmann

1208

Sten Kaijser Joan Wick Pelletier

Interpolation Functors and Duality



Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo

## **Authors**

Sten Kaijser Uppsala University, Department of Mathematics Thunbergsvägen 3, S-752 38 Uppsala, Sweden

Joan Wick Pelletier York University, Department of Mathematics 4700 Keele Street, North York, Ontario, Canada, M3J 1P3

Mathematics Subject Classification (1980): 46M 15, 46M 35

ISBN 3-540-16790-0 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-16790-0 Springer-Verlag New York Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data. Kaijser, Sten. Interpolation functors and duality. (Lecture notes in mathematics; 1208) Bibliography: p. Includes index. 1. Linear topological spaces. 2. Functor theory. I. Pelletier, Joan Wick, 1942-. II. Title. III. Series: Lecture notes in mathematics (Springer-Verlag); 1208.

QA3.L28 no. 1208 510 s 86-20242 [QA322] [515.7'3] ISBN 0-387-16790-0 (U.S.)

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1986 Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140-543210

## CONTENTS

| 0.   | Introduction                                                                                        | 1          |  |
|------|-----------------------------------------------------------------------------------------------------|------------|--|
|      | PART I .                                                                                            |            |  |
| I.   | Preliminaries                                                                                       |            |  |
|      |                                                                                                     |            |  |
|      | 1. The Setting                                                                                      | 7          |  |
|      | <ol> <li>Doolittle Diagrams, Couples, and Regular Couples</li> <li>Interpolation Spaces</li> </ol>  | 12<br>16   |  |
| II.  | The Real Method                                                                                     |            |  |
|      | 1. The J- and K-methods                                                                             | 18         |  |
|      | 2. The Duality Theorem                                                                              | 22         |  |
|      | 3. The Equivalence Theorem                                                                          | 25         |  |
| III. | The Complex Method                                                                                  |            |  |
|      | <ol> <li>The General Duality Theorem</li> <li>The Duality Theorem</li> </ol>                        | 33<br>38   |  |
|      | a. The budiley incorem                                                                              | 00         |  |
|      | PART II                                                                                             |            |  |
| IV.  | Categorical Notions                                                                                 |            |  |
|      | 1. Categories of Doolittle Diagrams                                                                 | 44         |  |
|      | 2. Doolittle Diagrams of Banach Spaces                                                              | 50         |  |
|      | 3. Limits, Colimits, and Morphisms                                                                  | 54         |  |
|      | <ol> <li>Functors and Natural Transformations</li> <li>Interpolation Spaces and Functors</li> </ol> | 58<br>64   |  |
| v.   | Finite Dimensional Doolittle Diagrams                                                               |            |  |
|      | 1. 1-dimensional Doolittle Diagrams and Applications                                                | 73         |  |
|      | 2. The Structure Theorem                                                                            | 79         |  |
|      | 3. Operators of Finite Rank                                                                         | 84         |  |
|      | 4. Applications                                                                                     | 86         |  |
| VI.  | Kan Extensions                                                                                      |            |  |
|      | 1. Definition                                                                                       | 93         |  |
|      | 2. Examples                                                                                         | 94         |  |
|      | 3. Computable Functors                                                                              | 99         |  |
|      | 4. Aronszajn-Gagliardo Functors 5. Computability of Lan                                             | 100<br>104 |  |
|      |                                                                                                     |            |  |

| VII.   | Duality                    |                                                                                                                                         |                                 |  |
|--------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
|        | 1.<br>2.<br>3.<br>4.<br>5. | Dual Functors Descriptions of the Dual Functors Duality for Computable Functors Approximate Reflexivity Duals of Interpolation Functors | 106<br>108<br>111<br>115<br>117 |  |
|        |                            | PART III                                                                                                                                |                                 |  |
| VIII.  | I. More About Duality      |                                                                                                                                         |                                 |  |
|        | 1.<br>2.                   | Comparison of Parts I and II<br>Quasi-injectivity and Quasi-projectivity                                                                | 123<br>126                      |  |
| IX.    | The                        | Classical Methods from a Categorical Viewpoint                                                                                          |                                 |  |
|        | 1.<br>2.<br>3.<br>4.       | Review of Results The Real Method Revisited The Complex Method Revisited The Dual Functor of $C_{\Theta}$                               | 132<br>133<br>143<br>154        |  |
| Biblio | Bibliography               |                                                                                                                                         |                                 |  |
| List o | f Sp                       | ecial Symbols and Abbreviations                                                                                                         | 162                             |  |
| Index  |                            |                                                                                                                                         | 165                             |  |