O.A. Ivanov

Easy as π ?

An Introduction to Higher Mathematics

Translated by Robert G. Burns

With 60 Illustrations

O.A. IvanovDepartment of Mathematics and MechanicsSt. Petersburg State UniversityBibliotechnaya pl. 2, Stary PetergofSt. Petersburg, 198904Russia Translator:
Robert G. Burns
Department of Mathematics
and Statistics
York University
4700 Keele Street
Toronto, Ontario MJ3 1P3
Canada

```
Library of Congress Cataloging-in-Publication Data
Ivanov, O.A. (Oleg A.)

Easy as pi?: an introduction to higher mathematics / O.A. Ivanov.
p. cm.
Includes bibliographical references and index.

ISBN 978-0-387-98521-3 ISBN 978-1-4612-0553-1 (eBook)
DOI: 10.1007/978-1-4612-0553-1

1. Mathematics. I. Title.
QA37.2.187 1998
510—dc21 98-16710
```

Printed on acid-free paper.

First Russian Edition: Избранные главы элементарной математики, St. Petersburg, 1995.

© 1999 Springer Science+Business Media New York Originally published by Springer-Verlag New York Berlin Heidelberg in 1999 Softcover reprint of the hardcover 1 st edition 1999

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Timothy Taylor; manufacturing supervised by Jeffrey Taub. Photocomposed copy prepared from the translator's IATeX file.

98765432

Contents

F(Foreword				
Preface Introduction					
In	ntroduction				
	Tanada		1		
1		action	1		
	1.1	Principle or method?	1		
	1.2	The set of integers	3		
	1.3	Peano's axioms	5		
	1.4	Addition, order, and multiplication	6		
	1.5	The method of mathematical induction	8		
2	Combinatorics				
	2.1	Elementary problems	13		
	2.2	Combinations and recurrence relations	16		
	2.3	Recurrence relations and power series	21		
	2.4	Generating functions	23		
	2.5	The numbers π , e , and n -factorial	28		
3	Geometric Transformations				
	3.1	Translations, rotations, and other symmetries, in the context of			
		problem-solving	32		
	3.2	Problems involving composition of transformations	35		
	3.3	The group of Euclidean motions of the plane	37		
	3.4	Ornaments	39		
	3.5	Mosaics and discrete groups of motions	42		

х (Contents
-----	----------

4	Ineq	ualities	46	
	4.1	The means of a pair of numbers	46	
	4.2	Cauchy's inequality and the a.m.–g.m. inequality	50	
	4.3	Classical inequalities and geometry	54	
	4.4	Integral variants of the classical inequalities	57	
	4.5	Wirtinger's inequality and the isoperimetric problem	59	
5	Sets	Equations, and Polynomials	63	
	5.1	Figures and their equations	63	
	5.2	Pythagorean triples and Fermat's last theorem	66	
	5.3	Numbers and polynomials	70	
	5.4	Symmetric polynomials	71	
	5.5	Discriminants and resultants	74	
	5.6	The method of elimination and Bézout's theorem	7 4 79	
	5.7	The factor theorem and finite fields	82	
	3.7	The factor theorem and finite fields	02	
6	Graj		85	
	6.1	Graphical reformulations	85	
	6.2	Graphs and parity	88	
	6.3	Trees	89	
	6.4	Euler's formula and the Euler characteristic	92	
	6.5	The Jordan curve theorem	94	
	6.6	Pairings	98	
	6.7	Eulerian graphs and a little more	100	
7	The Pigeonhole Principle			
	7.1	Pigeonholes and pigeons	103	
	7.2	Poincaré's recurrence theorem	105	
	7.3	Liouville's theorem	107	
	7.4	Minkowski's lemma	110	
	7.5	Sums of two squares	113	
	7.6	Sums of four squares. Euler's identity	115	
	7.0	Sums of four squares. Buter s tackets,	110	
8	The Quaternions			
	8.1	The skew-field of quaternions, and Euler's identity	118	
	8.2	Division algebras. Frobenius's theorem	121	
	8.3	Matrix algebras	123	
	8.4	Quaternions and rotations	125	
9	The Derivative			
-	9.1	Geometry and mechanics	128 128	
	9.1	Functional equations	133	
	9.2	The motion of a point—particle	133	
	9.3 9.4		134	
	9.4 9.5	On the number <i>e</i>	137	
	9.3	CONTRACTING MADS	117	

		Contents	xi		
	9.6	Linearization	142		
	9.7	The Morse–Sard theorem	143		
	9.8	The law of conservation of energy	146		
	9.9	Small oscillations	149		
10	The I	Foundations of Analysis	155		
	10.1	The rational and real number fields	155		
	10.2	Nonstandard number lines	158		
	10.3	"Nonstandard" statements and proofs	161		
	10.4	The reals numbers via Dedekind cuts	163		
	10.5	Construction of the reals via Cauchy sequences	166		
	10.6	Construction of a model of a nonstandard real line	168		
	10.7	Norms on the rationals	172		
Re	References				
Inc	ndex				