A Combinatorial Introduction to Topology

Michael Henle

Oberlin College

DOVER PUBLICATIONS, INC. New York

Contents

Chapter One					
Basi	Basic Concepts				
\$1	The Combinatorial Method 1				
§2	Continuous Transformations in the Plane 11				
63	Compactness and Connectedness 22				
\$4	Abstract Point Set Topology 28				
Chap	pter Two				
		-			

A Link Between Analysis and Topology 33

iv	CONTENTS
16	Sperner's Lemma and the Brouwer Fixed Point Theorem 36
\$7.	Phase Portraits and the Index Lemma 43
.58	Winding Numbers 48
19	Isolated Critical Points 54
\$10	The Poincaré Index Theorem 60
§11	Closed Integral Paths 67
§12	Further Results and Applications 73
Cha	pter Three
Plan	e Homology and the Jordan Curve Theorem
\$13	Polygonal Chains 79
\$14	The Algebra of Chains on a Grating 84
\$15	The Boundary Operator 88
<u>§16</u>	The Fundamental Lemma 91
§17	Alexander's Lemma 97
§18	Proof of the Jordan Curve Theorem 100
Cha	pter Four
Surf	aces
§19	Examples of Surfaces 104
\$20	The Combinatorial Definition of a Surface 116
\$21	The Classification Theorem 122
§22	Surfaces with Boundary 129

Chapter Five

538

Other Homologies 259

Hom	ology of Complexes
123	Complexes 132
\$24	Homology Groups of a Complex 143
\$25	Invariance 153
§26	Betti Numbers and the Euler Characteristic 159
\$27	Map Coloring and Regular Complexes 169
<u>\$</u> 28	Gradient Vector Fields 176
529	Integral Homology 185
\$30	Torsion and Orientability 192
531	The Poincaré Index Theorem Again 200
Chap	ster Six
Cont	inuous Transformations
532	Covering Spaces 209
§33	Simplicial Transformations 221
\$34	Invariance Again 228
935	Matrixes 234
\$36	The Lefschetz Fixed Point Theorem 242
\$37	Homotopy 251

vi contents

Supplement

Topic	s in Point Set Topology
139	Cryptomorphic Versions of Topology 265
§40	A Bouquet of Topological Properties 273
§41	Compactness Again 279
§42	Compact Metric Spaces 284
Hint	s and Answers for Selected Problems 287
Sugg	estions for Further Reading 302
Bibli	ography 303
Inde	100