A First Course in Differential Geometry

CHUAN-CHIH HSIUNG

Contents

GENERAL NOTATION AND DEFINITIONS

CHAPTER 1. EUCLIDEAN SPACES

1. Point Sets. 1

- 1.1. Neighborhoods and Topologies, 1
- 1.2. Open and Closed Sets, and Continuous Mappings, 4
- 1.3. Connectedness, 7
- 1.4. Infimum and Supremum, and Sequences, 9
- 1.5. Compactness, 11

2. Differentiation and Integration, 15

- 2.1. The Mean Value Theorems, 15
- 2.2. Taylor's Formulas, 17
- 2.3. Maxima and Minima, 18
- 2.4. Lagrange Multipliers, 20

3. Vectors, 23

- 3.1. Vector Spaces, 23
- 3.2. Inner Product. 24
- 3.3. Vector Product, 25
- Linear Combinations and Linear Independence;
 Bases and Dimensions of Vector Spaces, 27
- 3.5. Tangent Vectors, 29
- 3.6. Directional Derivatives, 32

4. Mappings, 35

- 4.1. Linear Transformations and Dual Spaces, 35
- 4.2. Derivative Mappings, 40

5. Linear Groups, 46

- 5.1. Linear Transformations, 46
- 5.2. Translations and Affine Transformations, 52

xii		CON	TENTS	
	5.3. 5.4.	Isometries or Rigid Motions, 54 Orientations, 59		
6.	Differential Forms, 64			
	6.1. 6.2. 6.3.	Exterior Multiplication and Differentiation, 67		
7.	The	Calculus of Variations, 75		
CH	APT	ER 2. CURVES	78	
1.	General Local Theory, 78			
	1.1. 1.2. 1.3.	Parametric Representations, 78 Arc Length, Vector Fields, and Knots, 82 The Frenet Formulas, 88 Local Canonical Form and Osculants, 100		
2.	Plane Curves, 109			
	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8.	Envelopes of Curves, 112 Convex Curves, 113 The Isoperimetric Inequality, 118 The Four-Vertex Theorem, 123 The Measure of a Set of Lines, 126		
3.	Global Theorems for Space Curves, 139			
		Total Curvature, 139 Deformations, 147		
СН	APT	ER 3. LOCAL THEORY OF SURFACES	151	

1. Parametrizations, 151

Directions, 188

5. Mappings of Surfaces, 197

2. Functions and Fundamental Forms, 170

Form of a Surface in a Neighborhood of a Point, 182
 Principal Curvatures, Asymptotic Curves, and Conjugate

CONTENTS	xiii

 Triply Orthogonal Systems, and the Theorems of Du Liouville, 203 	pin and
7. Fundamental Equations, 207	
8. Ruled Surfaces and Minimal Surfaces, 214	
9. Levi-Civita Parallelism, 224	
10. Geodesics, 229	
CHAPTER 4. GLOBAL THEORY OF SURFACES	241
1. Orientation of Surfaces, 241	
2. Surfaces of Constant Gaussian Curvature, 246	
3. The Gauss-Bonnet Formula, 252	
 Exterior Differential Forms and a Uniqueness Theoret for Surfaces, 267 	m
5. Rigidity of Convex Surfaces and Minkowski's Formula	as, 275
6. Some Translation and Symmetry Theorems, 280	
 Uniqueness Theorems for Minkowski's and Christoffel Problems, 285 	ľs
8. Complete Surfaces, 292	
Appendix 1. Proof of Existence Theorem 1.5.1, Chapter 2	307
Appendix 2. Proof of the First Part of Theorem 7.3, Chap	ter 3 309
Bibliography	313
Answers and Hints to Exercises	316
Index	225