Numerical Methods, Software, and Analysis

Second Edition

John R. Rice

Department of Computer Science Purdue University West Lafayette, Indiana

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers

Boston San Diego New York London Sydney Tokyo Toronto

CONTENTS

PREFACE			xi			
1	МА	THEMATICS AND COMPUTER SCIENCE BACKGROUND**	1			
•		Calculus				
	1.2	Vectors, Matrices, and Linear Equations				
		Differential Equations				
		Programming				
2	NU	NUMERICAL SOFTWARE				
	2.1	The Library Concept	20			
	2.2	Using a Library	21			
	2.3	Standard Numerical Software*	24			
		A. Individual Programs	24			
		B. Software Libraries	25			
		C. Software Packages	25			
		D. Software Systems	27			
	2.4	The IMSL Mathematics Library	30			
	2.5	The PROTRAN System				
		A. Simple Statements	33			
		B. Declarations, Scalars, Vectors, and Matrices	33			
		C. Problem-Solving Statements	36			
3	ERRORS, ROUND-OFF, AND STABILITY					
	3.1					
		A. Real Problems and Mathematical Models				
		B. Constructing and Implementing Methods	40			
	3.2	Numerical Approximations				
		A. Truncation Error				
		B. Order of Convergence	44			

^{**} Advanced or peripheral material

* Other material skipped in one-semester course

vi CONTENTS

	3.3	Round-Off Errors	49
		A. Floating Point Arithmetic	49
		B. Propagation of Round-Off Errors	51
		C. Stability and Condition of Problems	53
	3.4	Case Study: Calculation of π	
		How to Estimate Errors and Uncertainty	
		·	
4	MO	DELS AND FORMULAS FOR NUMERICAL COMPUTATION	69
•		Polynomials	
		A. Evaluation and Manipulation of Polynomials	
	4.2	Piecewise Polynomials	
	4.3	·	
		Other Piecewise Polynomials and Splines with Multiple Knots**	
		General Methods for Deriving Formulas	
	4.5	A. Models for Analytic Substitution	
		B. The Method of Undetermined Coefficients	
		C. The Taylor's Series Method**	
		D. Superaccurate Formulas**	
		D. Superaccurate Fornulas	90
5	INT	'ERPOLATION	03
J		General Interpolation Using Linear Equation Solvers	
		Interpolation Methods for Polynomials	
	3.2	A. Lagrange Polynomial Interpolation	
		B. Newton Interpolation and Divided Differences	
	<i>-</i> 2	C. Osculatory Interpolation and B-Splines with Multiple Knots**	
	3.3	Interpolation Methods for Piecewise Polynomials	
		A. Hermite Cubic Interpolation	
	- 1	B. Cubic Spline Interpolation**	
	5.4	Software for Interpolation	
		A. Software for Polynomial Interpolation	
		B. Software for Hermite Cubic Interpolation	
		C. Software for Spline Interpolation	
	5.5	Choice of Interpolation Forms and Points*	
		A. Assessment of Polynomial Representations	
		B. Assessment of Piecewise Polynomial Representations	
		C. Selection of Interpolation Points**	
		D. Selection of Break Points and Knots**	
	5.6	Error Analysis for Interpolation	
		A. Norms and Linear Operators	
		B. Divided Differences and Derivatives	
		C. Error Analysis for Polynomial Interpolation	
		D. Error Analysis for Piecewise Polynomial and Spline Interpolation**	. 167
6	MA	TRICES AND LINEAR EQUATIONS	
	6.1	Types and Sources of Matrix Computation Problems**	. 173

			Linear Systems of Equations, Ax=b	
		В.	Types of Matrics	. 176
		C.	Matrix Computation Problems	. 179
	6.2	Gau	ss Elimination, Lu-Factorization, and Pivoting	. 181
			Pivoting in Gauss Elimination	
		В.		
		C.	Algorithm Variations	
			Operations Count for Gauss Elimination	
	6.3		ation Methods for Linear Systems*	
			Jacobi, Gauss-Seidel, and SOR Iteration	
			When Iteration Methods Should be Considered	
	6.4		ware for Linear Equations	
		A.	The ACM Algorithms	
		В.	Three Software Packages	
		C.	The IMSL Library Software	
	6.5		e Study: Design of the Interface for a Linear Equations Solver	
	0.0	Α.	Design of a Fortran Interface	. 225
		В.	Storage Allocation and Variable Dimensions	. 227
		C.	The PROTRAN Interface for Ax=b	
	6.6	Ana	lysis of the Linear Equations Problem	
	0.0	Α.		
		B.	Three Condition Numbers*	
		C.		
		D.		. 236
		E.	The Composite Error Estimate**	
			Comparison of Error Estimators**	
	6.7		ensystem Problems and Software	
	0.7		Eigensystem Problems	
		B.	ACM Algorithms and EISPACK	. 248
			IMSL Software	
		٠.		
-	DIE	DDD.	ENTIATION AND INTEGRATION	263
7			hods for Estimating Derivatives	
	7.1		Finite Differences	264
		A.	Other Models for Discrete Data	265
	7.0	B.	ware for Differentiation	
	7.2			
	7.3	Ento	or Analysis for Differentiation Estimation of Integrals	209 272
	7.4	ine	Basic Rules	272
		_		
		B.	Piecewise Polynomial Methods	
		C.	Integration Rules with Weight Functions**	213 276
			Gauss Rules for Superaccuracy**	
	75	E.	ptive Quadrature**	280
	7.5		ware for Integration	
	7.0	-3017	WALE TO DIECKIATION	, 2007

viii CONTENTS

		A. ACM Algorithms, QUADPACK and IMSL Software					
		B. Performance Evaluation of Four Integration Methods	291				
		C. Selection of Methods for Numerical Integration	297				
		D. Reverse Communication	301				
	7.7	Error Analysis for Integration	318				
8	NO	NLINEAR EQUATIONS	323				
		Methods for One Nonlinear Equation					
		A. Seven Basic Iteration Methods					
		B. Convergence Tests					
		C. Initial Guesses for Iteration Methods					
	8.3	Special Situations and Polyalgorithms**					
	0.0	A. Multiple Roots	345				
		B. Deflation	348				
		C. Polyalgorithms for Nonlinear Equations					
	8.4	Polynomial Equations					
	0	A. Application of General Methods	350				
		B. Special Methods for Polynomials					
		C. Deflation and Purification*	353				
	8.5	Systems of Nonlinear Equations					
		Software for Nonlinear Equations					
	8.7						
	0.7	A. Bisection, Rugula Falsi					
		B. Fixed Point Iteration and \triangle^2 -Acceleration					
		C. Analysis of Methods with a Linear Model					
		D. Analysis of Methods with a Quadratic Model**					
		E. Remarks on Methods Not Analyzed**					
	8.8						
	0.0	A. Order and Efficiency of Methods					
		B. Selection of Methods					
		D. Selection of Methods					
9	ORDINARY DIFFERENTIAL EQUATIONS						
•	9.1	Introduction	411				
	7.1	A. Differential and Difference Equations					
		B. Stability of Differential and Difference Equations					
	0.2	Basic Methods for Initial Value Problems					
	7.2	A. One Step: Euler's Method	418				
		B. One Step: Taylor's Series Method					
		C. One Step: Runge-Kutta Methods					
		D. Multistep Methods					
		E. Predictor-Corrector Methods					
	03	Polyalgorithms for Differential Equations					
	2.3	A. Initialization					
		B. Step Size Control					
		D. DIED DIZE CUITIUI	4 33				

		C. Order of Method Control	435
		D. Output Control	
		E. Global Error Control	
		F. Checking	
	9.4	Systems of Differential Equations	
	9.5		
		A. The ACM Algorithms and Other Programs	442
		B. IMSL Software for Initial Value Problems	444
		C. IMSL Software for Two-Point Boundary Value Problems**	
		D. Software for Stiff Problems**	466
	9.6	Analysis of Methods for Differential Equations	
		A. One-Step Methods	
		B. Multistep Methods	
			, c
10	PAI	RTIAL DIFFERENTIAL EQUATIONS	485
		Partial Differential Equations as Physical Models	
		Discretization Methods	
		A. Finite Differences	
		B. Finite Element Methods	
		C. Comparison of Methods for Elliptic Problems**	
		D. Formulation of Methods in Terms of Linear Functionals**	
		E. The Method of Lines	
	10.3	Solution of the System of Algebraic Equations**	
		A. Equations from Time-Dependent Problems	532
		B. Equations from Elliptic Problems	
		C. Computational Effort for Elliptic Problems	
	10.4	Software for Partial Differential Equations	
		A. ACM Algorithms and IMSL Routines for Partial Differential Equations	
		B. Other Software for Partial Differential Equations	
		1	
11	API	PROXIMATION OF FUNCTIONS AND DATA	551
	11.1	Approximation Problems	551
		A. Three Classes of Approximation Problems	
		B. The L ₁ , Least-Squares, and Chebyshev Norms	
		C. Choice of Norm and Model	
		D. The Error of Approximation	
	11.2	Least Squares and Regression	
		A. Formulation of Least-Squares Problems	
		B. The Normal Equations	
		C. Gram-Schmidt Orthogonalization	
		D. Orthogonal Matrix Factorization	
	11.3	L ₁ and Chebyshev Approximation**	
		A. L ₁ Approximation	
		B. Chebyshev Approximation	
	11 4	Software for Approximation	573

x CONTENTS

	A. The ACM Algorithms	574		
	B. The Lawson-Hanson Least-Squares Software			
	C. PPPACK Software for Piecewise Polynomial Approximation			
	D. IMSL Software for Approximation			
	11.5 Case Study: The Representation of Data**			
	11.6 Case Study: The Smoothing of Data**			
	11.7 Approximation of Mathematical Functions**			
	11.8 Orthogonal Polynomials**			
12	SOFTWARE PRACTICE, COSTS, AND ENGINEERING	633		
	12.1 Software Types and Life Cycles	634		
	12.2 Programming Environment and Practice			
	A. The Design of Small Programs			
	B. Software Tools			
	12.3 Software Quality and Costs			
	A. Software Quality			
	B. Software Costs			
	12.4 Software Parts and Very High Level Languages**	653		
13	SOFTWARE PERFORMANCE EVALUATION			
	13.1 Program Efficiency	660		
	13.2 Software Reliability and Robustness			
	13.3 Software Portability	669		
	13.4 Reporting Computational Experiments	674		
14	THE VALIDATION OF NUMERICAL COMPUTATIONS	677		
4.1	14.1 Validation of Models in Numerical Computation			
	14.2 Sensitivity Analysis and Error Estimation			
	14.3 Software Errors			
	1 10 Contract 2000			
15	PROTRAN			
	15.1 How PROTRAN Works			
	15.2 PROTRAN Variables: Scalars, Vectors, and Matrices			
	A. PROTRAN Declarations			
	B. Range Variables for Vectors and Matrices			
	C. Special Matrix Storage Formats**			
	15.3 Debugging PROTRAN Programs			
	15.4 PROTRAN Statements			
	A. General Purpose Statements			
	B. Simple Statements			
	C. Problem-Solving Statements	·····		
INI	DEX	705		