An Introduction to Banach Space Theory

Robert E. Megginson Mathematics Department 3856 East Hall University of Michigan Ann Arbor, MI 48109-1109

Editorial Board

S. Axler Mathematics Department San Francisco State University San Francisco, CA 94132 USA

F.W. Gehring Mathematics Department East Hall University of Michigan Ann Arbor, MI 48109 USA

K.A. Ribet Mathematics Department University of California at Berkelev Berkeley, CA 94720-3840 USA

Mathematics Subject Classification (1991): 46-01, 46Bxx, 47Axx

Library of Congress Cataloging-in-Publication Data Megginson, Robert E.

An introduction to Banach space theory / Robert E. Megginson

p. cm. — (Graduate texts in mathematics; 183)

Includes bibliographical references (p. -) and index.

ISBN 978-1-4612-6835-2 ISBN 978-1-4612-0603-3 (eBook)

DOI10.1007/978-1-4612-0603-3

1. Banach spaces. I. Title. II. Series.

OA322.2.M44 1998

5151.732-dc21

97-52159

Printed on acid-free paper.

© 1998 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1998 Softcover reprint of the hardcover 1st edition 1998

All rights reserved. This work may not be translated or copied in whole or in part without the written

permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis. Use in

connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Steven Pisano; manufacturing supervised by Jacqui Ashri. Photocomposed pages prepared from the author's LaTeX files.

987654321

ISBN 978-1-4612-6835-2

Contents

	Pre	face	ix		
1	Basi	Basic Concepts			
	1.1	Preliminaries	1		
	1.2	Norms	8		
	1.3	First Properties of Normed Spaces	17		
	1.4	Linear Operators Between Normed Spaces	24		
	1.5	Baire Category	35		
	1.6	Three Fundamental Theorems	41		
	1.7	Quotient Spaces	49		
	1.8	Direct Sums	59		
	1.9	The Hahn-Banach Extension Theorems	70		
	1.10	Dual Spaces	84		
	1.11	The Second Dual and Reflexivity	97		
	1.12	Separability	109		
	*1.13	Characterizations of Reflexivity	115		
2	The	Weak and Weak* Topologies	137		
	2.1	Topology and Nets	138		
	2.2	Vector Topologies	161		
	*2.3	Metrizable Vector Topologies	185		
	2.4	Topologies Induced by Families of Functions	203		

^{*}An asterisk preceding a section number indicates an optional section.

viii	Contents	

		The Weak Topology	211 223 235 245 256 264 270
3	Linear Operators		
_	3.1	Adjoint Operators	283
	3.2	Projections and Complemented Subspaces	295
	3.3	Banach Algebras and Spectra	305
	3.4	Compact Operators	319
	3.5	Weakly Compact Operators	339
4		auder Bases	349
	4.1	First Properties of Schauder Bases	350
	4.2	Unconditional Bases	368
	4.3	Equivalent Bases	386
	4.4	Bases and Duality	399
	*4.5	James's Space J	411
5	Rot	undity and Smoothness	425
_	5.1	Rotundity	426
	5.2	Uniform Rotundity	441
	5.3	Generalizations of Uniform Rotundity	459
	5.4	Smoothness	479
	5.5	Uniform Smoothness	493
	5.6	Generalizations of Uniform Smoothness	504
A	Pre	requisites	517
В	B Metric Spaces		521
\mathbf{C}	C The Spaces ℓ_p and ℓ_p^n , $1 \le p \le \infty$		
D	D Ultranets		
	References		547
	List	of Symbols	565
	\mathbf{Ind}	ex	569