Γ -convergence for Beginners

Andrea Braides

Professor of Mathematics Università di Roma 'Tor Vergata'

CONTENTS

P	Preface		vii
In	trodu	iction	1
		Why a variational convergence?	1
		Parade of examples	4
		A maieutic approach to Γ -convergence. Direct methods	15
1	Г-со	invergence by numbers	19
	1.1	Some preliminaries	19
		1.1.1 Lower and upper limits	19
		1.1.2 Lower semicontinuity	21
	1.2	Γ-convergence	22
	1.3	Some examples on the real line	25
	1.4	The many definitions of Γ -convergence	26
	1.5	Convergence of minima	28
	1.6	Upper and lower Γ -limits	30
	1.7	The importance of being lower semicontinuous	32
		1.7.1 Lower semicontinuity of Γ -limits	32
		1.7.2 The lower-semicontinuous envelope. Relaxation	32
		1.7.3 Approximation of lower-semicontinuous functions	33
		1.7.4 The direct method	34
	1.8	More properties of Γ -limits	34
		1.8.1 Γ-limits of monotone sequences	35
		1.8.2 Compactness of Γ -convergence	35
		1.8.3 Γ-convergence by subsequences	36
	1.9	Γ-limits indexed by a continuous parameter	37
	1.10	Development by Γ -convergence	37
	1.11	Exercises	38
		Comments on Chapter 1	39
2	Integral problems		40
	2.1	Problems on Lebesgue spaces	40
		2.1.1 Weak convergences	41
		2.1.2 Weak-coerciveness conditions	43
	2.2	Weak lower semicontinuity conditions: convexity	44
	2.3	Relaxation and Γ -convergence in L^p spaces	47
	2.4	Problems on Sobolev spaces	50
		2.4.1 Weak convergence in Sobolev spaces	50

x Contents

		2.4.2 Integral functionals on Sobolev spaces.	
		Coerciveness conditions	51
	2.5	Weak lower semicontinuity conditions	52
	2.6	Γ-convergence and convex analysis	54
	2.7	Addition of boundary data	57
	2.8	Some examples with degenerate growth conditions	58
		2.8.1 Degeneracy of lower bounds: discontinuities	58
		2.8.2 Degeneracy of upper bounds: functionals of the	
		sup norm	59
	2.9	Exercises	61
		Comments on Chapter 2	62
3	Som	e homogenization problems	63
	3.1	A direct approach	63
	3.2	Different homogenization formulas	66
	3.3	Limits of oscillating Riemannian metrics	68
	3.4	Homogenization of Hamilton Jacobi equations	71
	3.5	Exercises	74
		Comments on Chapter 3	75
4	Fron	From discrete systems to integral functionals	
	4.1	Discrete functionals	77
	4.2	Continuous limits	78
		4.2.1 Nearest-neighbour interactions: a convexification	
		principle	78
		4.2.2 Next-to-nearest neighbour interactions: non-convex relaxation	80
		4.2.3 Long-range interactions: homogenization	82
		4.2.4 Convergence of minimum problems	84
	4.3	Exercises	84
	1.0	Comments on Chapter 4	84
5	Segi	nentation problems	85
	5.1	Model problems	86
	5.2	The space of piecewise-constant functions	87
	• -	5.2.1 Coerciveness conditions	87
		5.2.2 Functionals on piecewise-constant functions	88
	5.3	Lower semicontinuity conditions: subadditivity	88
	5.4	Relaxation and Γ-convergence	91
		5.4.1 Translation-invariant functionals	91
		5.4.2 Properties of subadditive functions on R	92
		5.4.3 Relaxation: subadditive envelopes	93
		5.4.4 Γ-convergence	97
		5.4.5 Boundary values	98
	5.5	Exercises	99

Conten	nts	xi

		Comments on Chapter 5	100
		Caccioppoli partitions	100
6	Phas	se-transition problems	102
	6.1	Phase transitions as segmentation problems	102
	6.2	Gradient theory for phase-transition problems	103
	6.3	Gradient theory as a development by Γ -convergence	109
		Comments on Chapter 6	112
7	Free	-discontinuity problems	114
	7.1	Piecewise-Sobolev functions	114
	7.2	Some model problems	114
		7.2.1 Signal reconstruction: the Mumford–Shah functional	115
		7.2.2 Fracture mechanics: the Griffith functional	115
	7.3	Functionals on piecewise-Sobolev functions	116
	7.4	Examples of existence results	117
		Comments on Chapter 7	119
		Special functions of bounded variation	120
8	App	roximation of free-discontinuity problems	$\boldsymbol{121}$
	8.1	The Ambrosio Tortorelli approximation	121
	8.2	Approximation by convolution problems	124
		8.2.1 Convolution integral functionals	125
		8.2.2 Limits of convolution functionals	126
	8.3	Finite-difference approximation	130
		Comments on Chapter 8	131
9	Mor	e homogenization problems	132
	9.1	Oscillations and phase transitions	132
	9.2	Phase accumulation	135
	9.3	Homogenization of free-discontinuity problems	137
		Comments on Chapter 9	138
10		raction between elliptic problems and partition	
	prob	lems	139
	10.1	Quantitative conditions for lower semicontinuity	139
	10.2	Existence without lower semicontinuity	142
	10.3	Relaxation by interaction	143
	10.4	Exercises	148
		Comments on Chapter 10	148
		Structured deformations	149
11	Disc	rete systems and free-discontinuity problems	150
	11.1	Interpolation with piecewise-Sobolev functions	151
	11.2	Equivalent energies on piecewise-Sobolev functions	153
	11.3	Softening and fracture problems as limits of discrete models	154

xii Contents

	11.4	Fracture as a phase transition	156
		Malik Perona approximation of free-discontinuity problems	159
	11.6	Exercises	159
		Comments on Chapter 11	160
12	*Sor	ne comments on vectorial problems	161
	12.1	Lower semicontinuity conditions	162
		12.1.1 Quasiconvexity	163
		12.1.2 Convexity and polyconvexity	164
	12.2	Homogenization and convexity conditions	165
		12.2.1 Instability of polyconvexity	166
		12.2.2 Density of isotropic quadratic forms	168
		Comments on Chapter 12	169
13		ichlet problems in perforated domains	171
		Statement of the Γ -convergence result	172
		A joining lemma on varying domains	174
		Proof of the liminf inequality	177
	13.4	Proof of the lim sup inequality	178
		Comments on Chapter 13	181
14		nension-reduction problems	182
		Convex energies	182
	14.2	Non-convex vector-valued problems	185
		Comments on Chapter 14	186
15	*The	e 'slicing' method	187
	15.1	A lower inequality by the slicing method	188
	15.2	An upper inequality by density	191
		Comments on Chapter 15	193
16	*An	introduction to the localization method of	
	Г-со	nvergence	194
Appendices		197	
A	Som	e quick recalls	197
	A.1	Convexity	197
	A.2	Sobolev spaces	198
	A.3	*Sets of finite perimeter	200
В	Cha	racterization of Γ -convergence for 1D integral problems	203
Lis	st of	symbols	207
Re	ferer	ices	209
In	Index		