

V. V. Prasolov

Problems and Theorems in Linear Algebra

CONTENTS

Freiace	XV
Main notations and conventions	xvii
Chapter I. Determinants	1
Historical remarks: Leibniz and Seki Kova. Cramer, L'Hôspital, Cauchy and	
Jacobi	
1. Basic properties of determinants	1
The Vandermonde determinant and its application. The Cauchy determinant. Continued frac-	
tions and the determinant of a tridiagonal matrix. Certain other determinants.	
Problems	
2. Minors and cofactors	9
Binet-Cauchy's formula. Laplace's theorem. Jacobi's theorem on minors of the adjoint matrix.	
The generalized Sylvester's identity. Chebotarev's theorem on the matrix $\ \varepsilon^{ij}\ _1^{p-1}$, where $\varepsilon =$	
$\exp(2\pi i/p)$.	
Problems	
3. The Schur complement	16
Given $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$, the matrix $(A A_{11}) = A_{22} - A_{21}A_{11}^{-1}A_{12}$ is called the Schur complement	
$(\text{of }A_{11}\text{ in }A).$	
3.1. $\det A = \det A_{11} \det (A A_{11})$.	
3.2. Theorem. $(A B) = ((A C) (B C)).$	
Problems	
4. Symmetric functions, sums $x_1^k + \cdots + x_n^k$, and Bernoulli numbers	19
Determinant relations between = (u u) = (u u) - uk	
Determinant relations between $\sigma_k(x_1, \dots, x_n)$, $s_k(x_1, \dots, x_n) = x_1^{i_1} + \dots + x_n^{i_n}$ and $p_k(x_1, \dots, x_n) = \sum_{i_1 + \dots + i_k = n} x_1^{i_1} \dots x_n^{i_n}$. A determinant formula for $S_n(k) = 1^n + \dots + (k-1)^n$. The Bernoulli numbers	
$\frac{i_1 + \dots i_k = n}{\text{and } S_n(k)}.$	
4.4. Theorem. Let $u = S_1(x)$ and $v = S_2(x)$. Then for $k \ge 1$ there exist polynomials p_k and q_k	
such that $S_{2k+1}(x) = u^2 p_k(u)$ and $S_{2k}(x) = vq_k(u)$.	
Problems $P(x) = u P_k(u) \text{ and } S_{2k}(x) = vq_k(u).$	
Solutions	
Chapter II. Linear spaces	35
Historical remarks: Hamilton and Grassmann	
5. The dual space. The orthogonal complement Linear equations and their application to the following theorem:	37

viii CONTENTS

5.4.3. Theorem. If a rectangle with sides a and b is arbitrarily cut into squares with sides x_1, \ldots, x_n then $\frac{x_i}{a} \in \mathbb{Q}$ and $\frac{x_i}{b} \in \mathbb{Q}$ for all i .	
Problems	
6. The kernel (null space) and the image (range) of an operator. The quotient space 6.2.1. Theorem. Ker $A^* = (\operatorname{Im} A)^{\perp}$ and $\operatorname{Im} A^* = (\operatorname{Ker} A)^{\perp}$. Fredholm's alternative. Kronecker-Capelli's theorem. Criteria for solvability of the matrix equation $C = AXB$. Problem	42
 7. Bases of a vector space. Linear independence	45
8. The rank of a matrix The Frobenius inequality. The Sylvester inequality. 8.3. Theorem. Let U be a linear subspace of the space $M_{n,m}$ of $n \times m$ matrices, and $r \le m \le n$. If rank $X \le r$ for any $X \in U$ then dim $U \le rn$. A description of subspaces $U \subset M_{n,m}$ such that dim $U = nr$. Problems	48
9. Subspaces. The Gram-Schmidt orthogonalization process Orthogonal projections. 9.5. Theorem. Let e_1, \ldots, e_n be an orthogonal basis for a space V , $d_i = e_i $. The projections of the vectors e_1, \ldots, e_n onto an m -dimensional subspace of V have equal lengths if and only if $d_i^2(d_1^{-2} + \cdots + d_n^{-2}) \ge m$ for every $i = 1, \ldots, n$. 9.6.1. Theorem. A set of k -dimensional subspaces of V is such that any two of these subspaces have a common $(k-1)$ -dimensional subspace. Then either all these subspaces have a common $(k-1)$ -dimensional subspace or all of them are contained in the same $(k+1)$ -dimensional subspace. Problems	51
 10. Complexification and realification. Unitary spaces Unitary operators. Normal operators. 10.3.4. Theorem. Let B and C be Hermitian operators. Then the operator A = B + iC is normal if and only if BC = CB. Complex structures. Problems 	55
Solutions	
Chapter III. Canonical forms of matrices and linear operators	63
11. The trace and eigenvalues of an operator The eigenvalues of an Hermitian operator and of a unitary operator. The eigenvalues of a tridiagonal matrix. Problems	<u>63</u>
12. The Jordan canonical (normal) form 12.1. Theorem. If A and B are matrices with real entries and $A = PBP^{-1}$ for some matrix P with complex entries then $A = QBQ^{-1}$ for some matrix Q with real entries. The existence and uniqueness of the Jordan canonical form (Väliacho's simple proof).	68

CONTENTS ix

The real Jordan canonical form. 12.5.1. Theorem. a) For any operator A there exist a nilpotent operator A_n and a semisimple operator A_s such that $A = A_s + A_n$ and $A_s A_n = A_n A_s$. b) The operators A_n and A_s are unique; besides, $A_s = S(A)$ and $A_n = N(A)$ for some polynomials S and N .	
12.5.2. Theorem. For any invertible operator A there exist a unipotent operator A_u and a semisimple operator A_s such that $A = A_s A_u = A_u A_s$. Such a representation is unique. 12.6. The proof of the Kronecker theorem for points of linear maps. Problems	
13. The minimal polynomial and the characteristic polynomial 13.1.2. Theorem. For any operator A there exists a vector v such that the minimal polynomial of v (with respect to A) coincides with the minimal polynomial of A . 13.3. Theorem. The characteristic polynomial of a matrix A coincides with its minimal polynomial if and only if for any vector (x_1, \ldots, x_n) there exist a column P and a row Q such that $x_k = QA^k P$. Hamilton-Cayley's theorem and its generalization for polynomials of matrices. Problems	77
14. The Frobenius canonical form Existence of the Frobenius canonical form (H. G. Jacob's simple proof) Problems	80
15. How to reduce the diagonal to a convenient form 15.1. Theorem. If $A \neq \lambda I$ then A is similar to a matrix with the diagonal elements $(0,, 0, \text{tr } A)$. 15.2. Theorem. Any matrix A is similar to a matrix with equal diagonal elements. 15.3. Theorem. Any nonzero square matrix A is similar to a matrix all diagonal elements of which	81
Problems	
16. The polar decomposition The polar decomposition of noninvertible and of invertible matrices. The uniqueness of the polar decomposition of an invertible matrix. 16.1. Theorem. If $A = S_1U_1 = U_2S_2$ are polar decompositions of an invertible matrix A then $U_1 = U_2$. 16.2.1. Theorem. For any matrix A there exist unitary matrices U, W and a diagonal matrix D such that $A = UDW$. Problems	84
 17. Factorizations of matrices 17.1. Theorem. For any complex matrix A there exist a unitary matrix U and a triangular matrix T such that A = UTU*. The matrix A is a normal one if and only if T is a diagonal one. Gauss, Gram, and Lanczos factorizations. 17.3. Theorem. Any matrix is a product of two symmetric matrices. Problems 	86
18. The Smith normal form. Elementary factors of matrices Problems	87
Solutions	
Chapter IV. Matrices of special form	95
19. Symmetric and Hermitian matrices Sylvester's criterion. Sylvester's law of inertia. Lagrange's theorem on quadratic forms. Courant- Fisher's theorem. 19.5.1.Theorem. If $A \ge 0$ and $(Ax, x) = 0$ for any x , then $A = 0$. Problems	95

x CONTENTS

20. Simultaneous diagonalization of a pair of Hermitian forms Simultaneous diagonalization of two Hermitian matrices A and B when $A > 0$. An example of two Hermitian matrices which can not be simultaneously diagonalized. Simultaneous diagonalization of two semidefinite matrices. Simultaneous diagonalization of two Hermitian matrices A and B such that there is no $x \neq 0$ for which $x^*Ax = x^*Bx = 0$. Problems	99
21. Skew-symmetric matrices 21.1.1 Theorem. If A is a skew-symmetric matrix then $A^2 \le 0$. 21.1.2 Theorem. If A is a real matrix such that $(Ax, x) = 0$ for all x, then A is a skew-symmetric matrix. 21.2. Theorem. Any skew-symmetric bilinear form can be expressed as	101
$\sum_{k=1}^{r} (x_{2k-1}y_{2k} - x_{2k}y_{2k-1}).$	
Problems 22. Orthogonal matrices. The Cayley transformation The standard Cayley transformation of an orthogonal matrix which does not have 1 as its eigenvalue. The generalized Cayley transformation of an orthogonal matrix which has 1 as its eigenvalue. Problems	103
23. Normal matrices 23.1.1. Theorem. If an operator A is normal then Ker A* = Ker A and Im A* = Im A. 23.1.2. Theorem. An operator A is normal if and only if any eigenvector of A is an eigenvector of A*.	105
23.2. Theorem. If an operator A is normal then there exists a polynomial P such that $A^* = P(A)$. Problems	
24. Nilpotent matrices 24.2.1. Theorem. Let A be an $n \times n$ matrix. The matrix A is nilpotent if and only if $tr(A^p) = 0$ for each $p = 1,, n$. Nilpotent matrices and Young tableaux.	107
Problems 25. Projections. Idempotent matrices 25.2.1&2. Theorem. An idempotent operator P is an Hermitian one if and only if a) Ker $P \perp \text{Im } P$; or b) $ Px \leq x $ for every x . 25.2.3. Theorem. Let P_1, \ldots, P_n be Hermitian, idempotent operators. The operator $P = P_1 + \cdots + P_n$ is an idempotent one if and only if $P_iP_j = 0$ whenever $i \neq j$. 25.4.1. Theorem. Let $V_1 \oplus \cdots \oplus V_k, P_i : V \longrightarrow V_i$ be Hermitian idempotent operators, $A = P_1 + \cdots + P_k$. Then $0 < \det A \leq 1$ and $\det A = 1$ if and only if $V_i \perp V_j$ whenever $i \neq j$. Problems	108
26. Involutions 26.2. Theorem. A matrix A can be represented as the product of two involutions if and only if the matrices A and A ⁻¹ are similar. Problems	112
Solutions	
Chapter V. Multilinear algebra	119
27. Multilinear maps and tensor products	119

CONTENTS xi

Ş.	An invariant definition of the trace. Kronecker's product of matrices, $A \otimes B$; the eigenvalues of
the	matrices $A \otimes B$ and $A \otimes I + I \otimes B$. Matrix equations $AX - XB = C$ and $AX - XB = \lambda X$.
Pre	oblems

28. Symmetric and skew-symmetric tensors

123

The Grassmann algebra. Certain canonical isomorphisms. Applications of Grassmann algebra: proofs of Binet-Cauchy's formula and Sylvester's identity.

28.5.4. Theorem. Let
$$\Lambda_B(t) = 1 + \sum_{q=1}^n \operatorname{tr}(\Lambda_B^q) t^q$$
 and $S_B(t) = \underbrace{1 + \sum_{q=1}^n \operatorname{tr}(S_B^q) t^q}_{q}$. Then $S_B(t) = (\Lambda_B(-t))^{-1}$.

Problems

29. The Pfaffian

129

The Pfaffian of principal submatrices of the matrix $M = \|m_{ij}\|_1^{2n}$, where $m_{ij} = (-1)^{i+j+1}$. **29.2.2. Theorem.** Given a skew-symmetric matrix A we have

$$\underline{\mathrm{Pf}(A+\lambda^2 M)} = \sum_{k=0}^n \lambda^{2k} p_k, \text{ where } p_k = \sum_{\sigma} A \begin{pmatrix} \sigma_1 & \dots & \frac{\sigma_{2(n-k)}}{\sigma_1} \\ \frac{\sigma_1}{\sigma_1} & \dots & \frac{\sigma_{2(n-k)}}{\sigma_{2(n-k)}} \end{pmatrix}.$$

Problems

30. Decomposable skew-symmetric and symmetric tensors

132

30.2.1. Theorem. $x_1 \wedge \cdots \wedge x_k = y_1 \wedge \cdots \wedge y_k \neq 0$ if and only if $\operatorname{Span}(x_1, \dots, x_k) = \operatorname{Span}(y_1, \dots, y_k)$.

30.2.2. Theorem. $S(x_1 \otimes \cdots \otimes x_k) = S(y_1 \otimes \cdots \otimes y_k) \neq 0$ if and only if $Span(x_1, \dots, x_k) = Span(y_1, \dots, y_k)$.

Plucker relations.

31. The tensor rank

Problems

135

Strassen's algorithm. The set of all tensors of rank ≤ 2 is not closed. The rank over $\mathbb R$ is not equal, generally, to the rank over $\mathbb C$.

Problems

32. Linear transformations of tensor products

137

A complete description of the following types of transformations of

$$V^m \otimes (V^*)^n \cong M_{m,n}$$
:

- 1) rank-preserving;
 - determinant-preserving;
 - 3) eigenvalue-preserving;
 - 4) invertibility-preserving.

Problems

Solutions

Chapter VI. Matrix inequalities

145145

33. Inequalities for symmetric and Hermitian matrices

33.1.1. Theorem. If A > B > 0 then $A^{-1} < B^{-1}$.

33.1.3. Theorem. If A > 0 is a real matrix then

$$(A^{-1}x, x) = \max_{y} (2(x, y) - (Ay, y)).$$

CONTENTS xii

33.2.1. Theorem. Suppose
$$A = \begin{pmatrix} A_1 & B \\ B^* & A_2 \end{pmatrix} > 0$$
. Then $|A| \le |A_1| \cdot |A_2|$.

Hadamard's inequality and Szasz's in

33.3.1. Theorem. Suppose $\alpha_i > 0$, $\sum_{i=1}^{n} \alpha_i = 1$ and $A_i > 0$. Then

$$|\alpha_1 A_1 + \cdots + \alpha_k A_k| \ge |A_1|^{\alpha_1} + \cdots + |A_k|^{\alpha_k}.$$

33.3.2. Theorem. Suppose $A_i \geq 0$, $\alpha_i \in \mathbb{C}$. Then

$$|\det(\alpha_1 A_1 + \cdots + \alpha_k A_k)| \le \det(|\alpha_1|A_1 + \cdots + |\alpha_k|A_k).$$

Problems

34. Inequalities for eigenvalues

Schur's inequality. Weyl's inequality (for eigenvalues of A + B). **34.2.2.** Theorem. Let $A = \begin{pmatrix} B & C \\ C^* & B \end{pmatrix} > 0$ be an Hermitian matrix, $\alpha_1 \leq \cdots \leq \alpha_n$ and

 $\beta_1 \leq \cdots \leq \beta_m$ the eigenvalues of A and B, respectively. Then $\alpha_i \leq \beta_i \leq \alpha_{n+i-m}$. **34.3. Theorem.** Let A and B be Hermitian idempotents, λ any eigenvalue of AB. Then $0 \le \lambda \le 1$.

34.4.1. Theorem. Let the λ_i and μ_i be the eigenvalues of A and AA*, respectively; let $\sigma_i = \sqrt{\mu_i}$. Let $|\lambda_1 \leq \cdots \leq \lambda_n$, where n is the order of A. Then $|\lambda_1 \ldots \lambda_m| \leq \sigma_1 \ldots \sigma_m$.

34.4.2.Theorem. Let $\sigma_1 \geq \cdots \geq \sigma_n$ and $\tau_1 \geq \cdots \geq \tau_n$ be the singular values of A and B. Then $|\operatorname{tr}(AB)| \leq \sum \sigma_i \tau_i$.

Problems

35. Inequalities for matrix norms

The spectral norm $||A||_s$ and the Euclidean norm $||A||_e$, the spectral radius $\rho(A)$.

35.1.2. Theorem. If a matrix A is normal then $\rho(A) = ||A||_s$.

35.2. Theorem. $||A||_s \le ||A||_e \le \sqrt{n} ||A||_s$.

The invariance of the matrix norm and singular values.

35.3.1. Theorem. Let S be an Hermitian matrix. Then $||A - \frac{A + A^*}{2}||$ does not exceed ||A - S||, where | | · | is the Euclidean or operator norm.

35.3.2. Theorem. Let A = US be the polar decomposition of A and W a unitary matrix. Then $||A-U||_{e} \leq ||A-W||_{e}$ and if $|A| \neq 0$, then the equality is only attained for W=U. Problems

36. Schur's complement and Hadamard's product. Theorems of Emily Haynsworth

36.1.1. Theorem. If A > 0 then $(A|A_{11}) > 0$.

36.1.4. Theorem. If A_k and B_k are the kth principal submatrices of positive definite order n matrices A and B, then

$$|A + B| \ge |A| \left(1 + \sum_{k=1}^{n-1} \frac{|B_k|}{|A_k|}\right) + |B| \left(1 + \sum_{k=1}^{n-1} \frac{|A_k|}{|B_k|}\right).$$

Hadamard's product $A \circ B$.

36.2.1. Theorem. If A > 0 and B > 0 then $A \circ B > 0$.

Oppenheim's inequality

Problems

37. Nonnegative matrices

Wielandt's theorem

Problems

158

155

150

153

CONTENTS	xiii
----------	------

38. Doubly stochastic matrices Birkhoff's theorem. H.Weyl's inequality.	162
Solutions	
Chapter VII. Matrices in algebra and calculus	173
39. Commuting matrices The space of solutions of the equation $AX = XA$ for X with the given A of order n . 39.2.2. Theorem. Any set of commuting diagonalizable operators has a common eigenbasis. 39.3. Theorem. Let A, B be matrices such that $AX = XA$ implies $BX = XB$. Then $B = g(A)$, where g is a polynomial. Problems	173
40. Commutators 40.2. Theorem. If tr $A = 0$ then there exist matrices X and Y such that $[X, Y] = A$ and either (1) tr $Y = 0$ and an Hermitian matrix X or (2) X and Y have prescribed eigenvalues. 40.3. Theorem. Let A, B be matrices such that $\operatorname{ad}_A^s X = 0$ implies $\operatorname{ad}_X^s B = 0$ for some $s > 0$. Then $B = g(A)$ for a polynomial g . 40.4. Theorem. Matrices A_1, \ldots, A_n can be simultaneously triangularized over $\mathbb C$ if and only if the matrix $p(A_1, \ldots, A_n)[A_i, A_j]$ is a nilpotent one for any polynomial $p(x_1, \ldots, x_n)$ in noncommuting indeterminates. 40.5. Theorem. If $\operatorname{rank}[A, B] \leq 1$, then A and B can be simultaneously triangularized over $\mathbb C$. Problems	175
41. Quaternions and Cayley numbers. Clifford algebras Isomorphisms $\mathfrak{so}(3,\mathbb{R}) \cong \mathfrak{su}(2)$ and $\mathfrak{so}(4,\mathbb{R}) \cong \mathfrak{so}(3,\mathbb{R}) \oplus \mathfrak{so}(3,\mathbb{R})$. The vector products in \mathbb{R}^3 and \mathbb{R}^7 . Hurwitz-Radon families of matrices. Hurwitz-Radon' number $\rho(2^{c+4d}(2a+1)) = 2^c + 8d$. 41.7.1. Theorem. The identity of the form $(x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2) = (z_1^2 + \cdots + z_n^2),$	180
where $z_i(x, y)$ is a bilinear function, holds if and only if $m \le \rho(n)$. 41.7.5. Theorem. In the space of real $n \times n$ matrices, a subspace of invertible matrices of dimension m exists if and only if $m \le \rho(n)$. Other applications: algebras with norm, vector product, linear vector fields on spheres. Clifford algebras and Clifford modules. Problems	
42. Representations of matrix algebras Complete reducibility of finite-dimensional representations of Mat(V ⁿ). Problems	190
43. The resultant Sylvester's matrix, Bezout's matrix and Barnett's matrix Problems	191
44. The general inverse matrix. Matrix equations 44.3. Theorem. a) The equation $AX - XA = C$ is solvable if and only if the matrices $\begin{pmatrix} A & O \\ O & B \end{pmatrix}$	196
and $\begin{pmatrix} A & C \\ O & B \end{pmatrix}$ are similar. b) The equation $AX - YA = C$ is solvable if and only if $\operatorname{rank} \begin{pmatrix} A & O \\ O & B \end{pmatrix} = \operatorname{rank} \begin{pmatrix} A & C \\ O & B \end{pmatrix}$.	
Problems 45. Hankel matrices and rational functions	200

xiv CONTENTS

46. Functions of matrices. Differentiation of matrices	202
Differential equation $\dot{X} = AX$ and the Jacobi formula for det A.	
Problems	
47. Lax pairs and integrable systems	204
48. Matrices with prescribed eigenvalues	207
48.1.2. Theorem. For any polynomial $f(x) = x^n + c_1 x^{n-1} + \cdots + c_n$ and any matrix B of order	
n-1 whose characteristic and minimal polynomials coincide there exists a matrix A such that B is a	
submatrix of A and the characteristic polynomial of A is equal to f.	
48.2. Theorem . Given all offdiagonal elements in a complex matrix A it is possible to select diagonal	
elements x_1, \ldots, x_n so that the eigenvalues of A are given complex numbers; there are finitely many	
sets $\{x_1,\ldots,x_n\}$ satisfying this condition.	
Solutions	
Appendix	219
Eisenstein's criterion, Hilbert's Nullstellensatz.	
Bibliography	223
Subject Index	227