PROBLEM BOOK

THEORY OF FUNCTIONS

Volume II

Problems in the Advanced Theory of Functions

BY KONRAD KNOPP

Professor of Mathematics, University of Tübingen translated by FREDERICK BAGEMIHL

(X

CA

CONTENTS

Foreword	Page 7	
		Solutions
Chapter I. Additional Problems for I, chs. 1–5 1)	obiems	Solutions
§ 1. Fundamental Concepts	9	49
§ 2. Infinite Sequences and Series	10	50
§ 3. Functions of a Complex Variable	12	54
§ 4. Integral Theorems	14	57
§ 5. Expansions in Series	15	59
Chapter II. Singularities		
§ 6. The Laurent Expansion	17	64
§ 7. The Various Types of Singularities	18	67
§ 8. The Residue Theorem, Zeros, and Poles	20	71
CHAPTER III. ENTIRE AND MEROMORPHIC FUNCTIONS		
§ 9. Infinite Products. Weierstrass's Factor-theorem	23	77
§ 10. Entire Functions	26	84
§ 11. Partial-fractions Series. Mittag-Leffler's Theorem	27	86
§ 12. Meromorphic Functions	29	90
CHAPTER IV. PERIODIC FUNCTIONS		
§ 13. Simply Periodic Functions	31	95
§ 14. Doubly Periodic Functions	32	96
CHAPTER V. ANALYTIC CONTINUATION		
§ 15. Behavior of Power Series on the Boundary of the		
Circle of Convergence	34	101
§ 16. Analytic Continuation of Power Series	36	105
§ 17. Analytic Continuation of Arbitrarily Given Func-		
tions	37	109

¹⁾ See the Foreword.

FOREWORD

This translation is of the fourth (1949) edition of K. Knopp's Aufgabensammlung zur Funktionentheorie, II. Teil.

References to the first volume of this Problem Book are indicated by writing "I" together with chapter, page or paragraph, and problem numbers; references to the present second volume contain only page or paragraph, and problem numbers. This second volume adheres strictly to the little function-theoretical volumes put out (except the last one) by Dover Publications. These works are quoted as follows:

- I = Problem Book in the Theory of Functions, vol. I: Problems in the Elementary Theory of Functions, translated by L. Bers, 1948.
- Elem. = Knopp, Elements of the Theory of Functions, translated by F. Bagemihl, 1952.
- K I = Knopp, Theory of Functions, Part I, translated by F. Bagemihl, 1945.
- K II = Knopp, Theory of Functions, Part II, translated by F. Bagemihl, 1947.
- B = Bieberbach, Einführung in die konforme Abbildung, 4th. ed., Berlin, 1949.

The present volume again contains mainly exercises which remain essentially within the range of ideas appearing in the volumes just mentioned. Only within this frame, and not in any absolute sense, is the division into elementary and advanced function theory intended. The present problems are based mostly on the last chapters of K I, as well as on K II and B. For using the book, the prefatory remarks to I are pertinent. Corresponding to the higher level now, the asterisk (*) is used more sparingly to denote the harder problems.