THEORY OF FUNCTIONS OF A COMPLEX VARIABLE

A. I. MARKUSHEVICH

Professor of Mathematics Moscow State University

Revised English Edition Translated and Edited by

Richard A. Silverman

Three volumes in one

CHELSEA PUBLISHING COMPANY NEW YORK, N. Y.

CONTENTS

PART 1 BASIC CONCEPTS.

[1 INTRODUCTION, Page 3.

- 1. Analytic Functions of a Real Variable, 3.
- 2. Infinitely Differentiable Functions, 5.
- Motivation for Introducing the Complex Numbers. A Preview of Analytic Functions of a Complex Variable, 7.
 Problems, 10.

1 2 COMPLEX NUMBERS, Page 12.

- Geometric Representation of Complex Numbers, 12.
- 5. Complex Algebra, 14.
- Powers and Roots of Complex Numbers, 17. Problems, 19.

I.3 SETS AND FUNCTIONS. LIMITS AND CON-TINUITY, Page 23.

- 7. Some Basic Definitions, 23.
- Sequences of Complex Numbers. Limit Points and Limits of Sequences, 27.
- Convergence of the Real and Imaginary Parts, Moduli and Arguments of a Complex Sequence, 32.
- 10. Series with Complex Terms, 35.
- 11. Limit Points of Sets. Bounded Sets, 42.

I.3 SETS AND FUNCTIONS, LIMITS AND CON-

- The Limit of a Function of a Complex Variable, 44.
- 13. Continuous Functions. More Set Theory, 46.
- The Distance between Two Sets, 52. Problems, 54.

1.4 CONNECTEDNESS. CURVES AND DOMAINS, Page 59.

- Connected Sets. Continuous Curves and Continua, 59.
- Domains. Interior, Exterior and Boundary Points, 64.
- 17. Simply and Multiply Connected Domains, 66.
- 18. The Jordan Curve Theorem, 69.
- Some Further Results, 72.
 Problems, 74.

I.5 INFINITY AND STEREOGRAPHIC PROJECTION, Page 77.

- 20. Proper and Improper Complex Numbers, 77.
- Stereographic Projection. Sets of Points on the Riemann Sphere. 79.
- The Extended Complex Plane. The Point at Infinity, 83.
- Conformality of Stereographic Projection. Continuous Curves in the Extended Plane, 87.
- The Transformation ζ = 1/z, 90.
- Another Definition of an Angle with its Vertex at Infinity, 91 Problems, 92.

I.6 HOMEOMORPHISMS, Page 94.

- The One-to-One Continuous Image of a Domain. 94.
- Some Further Results, 99. Problems, 100.

- PART 2 DIFFERENTIATION, ELEMENTARY FUNC-TIONS.
 - I.7 DIFFERENTIATION AND THE CAUCHY-RIEMANN EQUATIONS, Page 105.
 - 28. Derivatives and Differentials, 105.
 - Rules for Differentiating Functions of a Complex Variable, 107.
 - The Cauchy-Riemann Equations. Analytic Functions, 110.
 Problems, 116.
 - I.8 GEOMETRIC INTERPRETATION OF THE DE-RIVATIVE. CONFORMAL MAPPING, Page 118.
 - 31. Geometric Interpretation of Arg f'(z), 118.
 - Geometric Interpretation of |f'(z)|, 121.
 - 33. The Mapping $w = \frac{az + b}{cz + d}$, 122.
 - Conformal Mapping of the Extended Plane, 124.
 Problems, 126.
 - I.9 ELEMENTARY ENTIRE FUNCTIONS, Page 128.
 - 35. Polynomials, 128.
 - 36. The Mapping $w = P_n(z)$, 130.
 - 37. The Mapping $w = (z a)^n$, 132.
 - 38. The Exponential, 135.
 - 39. The Mapping $w = e^z$, 140.
 - Some Functions Related to the Exponential, 146.
 - 41. The Mapping $w = \cos z$, 150.
 - 42. The Image of a Half-Strip under $w = \cos z$. 154.

Problems, 158.

- I.10 ELEMENTARY MEROMORPHIC FUNCTIONS, Page 160.
 - 43. Rational Functions, 160.
 - The Group Property of Möbius Transformations, 165.

I.10 ELEMENTARY MEROMORPHIC FUNCTIONS —Continued

- The Circle-Preserving Property of Möbius Transformations, 168.
- Fixed Points of a Möbius Transformation. Invariance of the Cross Ratio, 171.
- 47. Mapping of a Circle onto a Circle, 176.
- 48. Symmetry Transformations, 178.
- 49. Examples, 181.
- * 50. Lobachevskian Geometry, 183.
 - 51. The Mapping $w = \frac{1}{2}(z + \frac{1}{z})$, 197.
 - Transcendental Meromorphic Functions. Trigonometric Functions, 202. Probems, 207.

I.11 ELEMENTARY MULTIPLE-VALUED FUNC-

- Single-Valued Branches. Univalent Functions, 212.
- 54. The Mapping $w = \sqrt[n]{z}$, 214.
- 55. The Mapping $w = \sqrt[n]{P(z)}$, 219.
- 56. The Logarithm, 224.
- The Function z^o. Exponentials and Logarithms to an Arbitrary Base, 228.
- 58. The Mapping w = Arc cos z. 234.
- 59. The Mapping $w = z + \ln z$, 237. Problems, 239.

PART 3 INTEGRATION. POWER SERIES.

I.12 RECTIFIABLE CURVES. COMPLEX INTE-GRALS, Page 245.

- 60. Some Basic Definitions, 245.
- 61. Integrals of Complex Functions, 248.
- Properties of Complex Integrals, 250. Problems, 253.

I.13 CAUCHY'S INTEGRAL THEOREM, Page 258.

- 63. A Preliminary Result, 258.
- 64. The Key Lemma, 259.
- 65. Proof of Cauchy's Integral Theorem, 261.
- Application to the Evaluation of Definite Integrals, 272.
- Cauchy's Integral Theorem for a System of Contours. 279.
- 68. Path-Independent Integrals. Primitives, 281.
- The Integral as a Function of Its Upper Limit in a Multiply Connected Domain, 284. Problems, 289.

I.14 CAUCHY'S INTEGRAL AND RELATED TOP-ICS, Page 293.

- 70. Cauchy's Integral Formula, 293.
- 71. Some Consequences of Theorem 14.1, 295.
- Integrals of the Cauchy Type. Cauchy's Inequalities, 299.
- 73. Boundary Values of Integrals of the Cauchy Type, 306.
- 74. The Plemelj Formulas, 309.
 Problems, 316.

I.15 UNIFORM CONVERGENCE. INFINITE PROD-UCTS, Page 321.

- 75. Uniformly Convergent Series, 321.
- Uniformly Convergent Sequences. Improper Integrals of the Cauchy Type, 330.
- Infinite Products, 334. Problems, 340.

I.16 POWER SERIES: RUDIMENTS, Page 344.

- 78. The Cauchy-Hadamard Formula, 344.
- 79. Taylor's Scries. The Uniqueness Property, 348.

I.16 POWER SERIES: RUDIMENTS—Continued

- The Relation between Power Series and Fourier Series, 353.
- Expansion of an Analytic Function in Power Series, 358.
 Problems, 365.

1 17 POWER SERIES: RAMIFICATIONS, Page 369.

- The Interior Uniqueness Theorem. A-Points of Analytic Functions, 369.
- The Maximum Modulus Principle and Some of Its Consequences. Lemniscates, 376.
- Circular Elements. Regular and Singular Points, 382.
- 85. Behavior of a Power Series on Its Circle of Convergence, 395.
 - Compact Families of Analytic Functions. Vitali's Theorem, 411.
- 87. Analytic Functions Defined by Integrals, 418.
 Problems, 423.

I.18 METHODS FOR EXPANDING FUNCTIONS IN TAYLOR SERIES, Page 429.

- The Taylor Series of the Sum of a Series of Analytic Functions, 429.
- The Taylor Series of a Composite Function, 432.
- Division of Power Series, 436.
 Problems, 444.

CONTENTS

- PART 1 LAURENT SERIES, CALCULUS OF RESI-DUES.
- II.1 LAURENT'S SERIES. ISOLATED SINGU-LAR POINTS, Page 3.
 - 1. Laurent's Theorem, 3.
 - 2. Poles and Essential Singular Points, 10.
 - Singular Points of f(z) ± g(z), f(z)g(z) and f(z)/g(z), 21.
 - Behavior at Infinity. The Poles of g(z)(d/dz) Ln [f(z) − A], 23.
 - Dirichlet Series, 26. Problems, 34.
- II.2 THE CALCULUS OF RESIDUES AND ITS APPLICATIONS, Page 40.
 - 6. The Residue Theorem, 40.
 - The Argument Principle. The Theorems of Rouché and Hurwitz, 46.
 - 8. Residues at Infinity, 52.
 - Cauchy's Theorem on Partial Fraction Expansions, 54.
 - 10. Examples of Partial Fraction Expansions, 59.
 - Interpolation Theory, 67.
 Problems, 80.
- II.3 INVERSE AND IMPLICIT FUNCTIONS, Page 86.
 - Inverse Functions: The Single-Valued Case, 86.

II.3 INVERSE AND IMPLICIT FUNCTIONS—

- Inverse Functions: The Multiple-Valued Case, 89.
- 14. Examples of Lagrange's Series, 94.
- *15. Functions of Two Complex Variables, 101.
- *16. Weierstrass' Preparation Theorem. The Implicit Function Theorem, 105. Problems, 112.

II.4 UNIVALENT FUNCTIONS, Page 115.

- 17. Some Elementary Results, 115.
- 18. Sufficient Conditions for Univalence, 118.
- Mapping of the Upper Half-Plane onto a Rectangle, 124.
- 20. The Schwarz-Christoffel Transformation, 128.
- Sufficient Conditions for Univalent Mapping onto a Half-Plane, 135.
 Problems, 138.

PART 2 HARMONIC AND SUBHARMONIC FUNC-TIONS.

II.5 BASIC PROPERTIES OF HARMONIC FUNC-TIONS, Page 143.

- Laplace's Equation. Conjugate Harmonic Functions, 143.
- 23. Poisson's Integral. Schwarz's Formula, 148.
- 24. The Dirichlet Problem for a Disk, 153.
- Behavior of a Harmonic Function near an Isolated Singular Point, 158.
- *26. Sequences of Harmonic Functions. Harnack's Theorem, 161.
- *27. Generalization of Poisson's Integral. The Dirichlet Problem for a Jordan Domain, 164. Problems, 169.

II.6 APPLICATIONS TO FLUID DYNAMICS, Page 174.

- Irrotational and Solenoidal Flows. The Complex Potential, 174.
- 29. Examples, 180.

- 30. Flow past a Circular Cylinder, 189.
- *31. Flow past an Arbitrary Cylindrical Object. The Kutta-Joukowski Theorem, 193. Problems, 198.

II. 7 SUBHARMONIC FUNCTIONS, Page 202.

- The Key Lemma. The Converse of Theorem 5.6, 202.
 - The Generalized Maximum Modulus Principle and Its Applications, 206.
- *34. The Phragmén-Lindelöf Theorems, 214. Problems, 220.

II.8 THE POISSON-JENSEN FORMULA AND RELATED TOPICS, Page 224.

- Various Versions of the Poisson-Jensen Formula, 224.
- 36. Jensen's Inequality. Blaschke Products, 229.
- 37. Functions of Bounded Characteristic, 236.
- *38. Nevanlinna's Theorem, 240. Problems, 243.

PART 3 ENTIRE AND MEROMORPHIC FUNC-TIONS.

II.9 BASIC PROPERTIES OF ENTIRE FUNC-TIONS, Page 249.

- 39. Growth of an Entire Function, 249.
- 40. Behavior of eP(s), 252
- Order and Type in Terms of the Taylor Coefficients, 255.
- 42. Distribution of Zeros, 261.
- 43. A-Points of Entire Functions, 263.
- 44. Picard's First Theorem, 268.
- *45. The Phragmén-Lindelöf Indicator Function, 270.

Problems, 279.

II.10 INFINITE PRODUCT AND PARTIAL FRAC-TION EXPANSIONS, Page 282.

- 46. Weierstrass' Theorem, 282.
- 47. The Exponent of Convergence, 285.
- 48. Hadamard's Factorization Theorem, 289.
- 49. Borel's Theorem, 292.
- 50. Meromorphic Functions, 297.
- 51. Mittag-Leffler's Theorem, 299.
- 52. The Gamma Function, 304.
- *53. Integral Representations of Γ(z). Partial Fraction Expansion of Γ(z), 310.
 - *54. Asymptotic Behavior of Γ(z). Stirling's Formula, 315. Problems, 322.

CONTENTS

PART 1 CONFORMAL MAPPING. APPROXIMATION THEORY.

III.1 CONFORMAL MAPPING: RUDIMENTS, Page 3.

- 1. Conformal Mapping of Annular Domains, 3.
- Conformal Mapping of Simply Connected Domains, 8.
- Basic Properties of Univalent Functions, 14. Problems, 27.

III.2 CONFORMAL MAPPING: RAMIFICATIONS, Page 32.

- Conformal Mapping of Sequences of Domains, 32.
- 5. Curvilinear Half-Intervals, 42.
- 6. Accessible Boundary Points, 52.
- 7. Prime Ends, 57.
- Boundary Behavior of Conformal Mappings, 66.
 Problems, 77.

III.3 APPROXIMATION BY RATIONAL FUNC-TIONS AND POLYNOMIALS, Page 80.

- 9. Locally Analytic Functions, 80.
- 10. Functions Meromorphic on a Domain, 84.
- 11. Runge's Theorem and Related Results, 88.
- 12. Approximation on Closed Domains, 97.
- 13. Approximation on Continua, 100.
- 14. Faber Polynomials, 104.
- 15. Bernstein's Theorem, 112.

III.3 APPROXIMATION BY RATIONAL FUNC-

- 16. Approximation in the Mean, 116.
- Polynomials Orthogonal on a Domain, 121. Problems, 129.

PART 2 PERIODIC AND ELLIPTIC FUNCTIONS.

III.4 PERIODIC MEROMORPHIC FUNCTIONS, Page 135.

- 18. Preliminaries, 135.
- Periodic Entire Functions. Trigonometric Polynomials, 141.
- Elliptic Functions, 146.
 Problems, 152.

III.5 ELLIPTIC FUNCTIONS: WEIERSTRASS' THEORY, Page 155.

- 21. Weierstrass' Elliptic Functions, 155.
- The Functions ρ(z | α, iβ) and ρ(z | α iβ, α + iβ), 162.
- The Differential Equation for φ(z), 168.
- 24. Inversion of Elliptic Integrals, 172.
- The Functions ζ(z) and σ(z), 178.
- The Addition Theorem for p(z), 183.
- The Spherical Pendulum, 186.
 Problems, 191.

III.6 ELLIPTIC FUNCTIONS: JACOBI'S THEORY, Page 194.

- 28. Jacobi's Elliptic Functions, 194.
- Theta Functions and Their Relation to Elliptic Functions, 198.
- Infinite Product Expansions of Theta Functions, 208.
 Problems, 212.

PART 3 RIEMANN SURFACES, ANALYTIC CON-TINUATION, Page 215.

III 7 RIEMANN SURFACES, Page 217.

- 31. Topological Preliminaries, 217.
- 32. Abstract Riemann Surfaces, 221.
- 33. Triangulations, 227.
- 34. Interior Mappings, 232.
- 35. Riemann Covering Surfaces, 237.
- 36. Regular Analytic Curves, 241.
- The Riemann Surface of a Meromorphic Function, 245.
- Examples, 250.
 Problems, 254.

III. 8 ANALYTIC CONTINUATION, Page 257.

- Elements. The Complete Analytic Function, 257.
- Circular Elements. The Monodromy Theorem, 263.
- 41. Analytic Continuation in a Star, 272.
- Singular Points. Generalized Elements and the Analytic Configuration, 276.
- The Analytic Configuration as a Topological Surface, 287.
- The Analytic Configuration as a Riemann Surface, 294.
- Algebraic Functions, 297.
 Problems, 308.

III.9 THE SYMMETRY PRINCIPLE AND ITS APPLICATIONS. Page 315.

- 46. The Symmetry Principle, 315.
- More on the Schwarz-Christoffel Transformation, 320.
- 48. Examples, 332.
- The Modular Function. Picard's First Theorem, 336.
- 50. Normal Families of Analytic Functions, 340.
- Picard's Second Theorem. Julia Directions, 343.
 Problems, 347.

BIBLIOGRAPHY, Page 351.

INDEX, Page 355.