Interpolation of Operators

Colin Bennett Robert Sharpley

Department of Mathematics University of South Carolina Columbia, South Carolina

ACADEMIC PRESS, INC.

Harcourt Brace Jouanoitch, Publishers Boston San Diego New York Berkeley London Sydney Tokyo Toronto

Contents

Preface	xiii
Chapter 1. Banach Function Spaces	1
 Banach Function Spaces Banach function norms ρ; Banach function spaces X; Fatou's lemma; the Riesz-Fischer property. 	2
 The Associate Space The associate norm ρ'; the associate space X'; Hölder's inequality; the Lorentz-Luxemburg theorem; the dual space X*. 	7
 Absolute Continuity of the Norm Functions of absolutely continuous norm; the subspace X_a of functions of absolutely continuous norm; the closure X_b of the bounded functions supported in sets of finite measure; comparison of X₂, X_b, and X. 	13
 Duality and Reflexivity The associate space and duality; the dual of X_a; conditions for coincidence of X' and X*; reflexivity and absolute continuity of the norm. 	19
 Separability σ(X, X')-completeness of Banach function spaces X; separa- ble measure spaces; separability of Banach function spaces; separability and reflexivity. 	24
Exercises and Further Results for Chapter 1	30
Notes for Chapter 1	33
	vii

iii	Content
-----	---------

Chapter 2. Rearrangement-Invariant Banach Function Spaces	35
 Distribution Functions and Decreasing Rearrangements The distribution function μ_f; equimeasurable functions; the decreasing rearrangement f*; the L^p-norm in terms of μ_f and f*. 	36
 An Inequality of Hardy and Littlewood The Hardy-Littlewood inequality; decreasing rearrangements of products; resonant and strongly resonant measure spaces. 	43
 An Elementary Maximal Function The maximal function f**; subadditivity of f → f**; the method of retracts; the Hardy-Littlewood-Pôlya relation; Hardy's lemma; conditional expectations. 	52
 Rearrangement-Invariant Spaces Rearrangement-invariant Banach function spaces; rearrangement-invariance of the associate space; order structure and the Hardy-Littlewood-Pólya relation; conditional expectations; the Luxemburg representation theorem. 	59
 The Fundamental Function The fundamental function; duality and separability of re-arrangement-invariant spaces; the Lorentz spaces A(X) and M(X); comparison of X, A(X), and M(X). 	65
 The Spaces L¹ + Lⁿ and L¹ ∩ Lⁿ. The norms in L¹ + Lⁿ and L¹ ∩ Lⁿ: Hölder's inequality; mutual associativity; extremal properties. 	73
 Measure-Preserving Transformations Measure-preserving transformations; Lorentz' lemma; Ryff's theorem; recovery of f from f* by a measure-preserving transformation. 	79
Exercises and Further Results for Chapter 2	87
Notes for Chapter 2	92
Chapter 3. Interpolation of Operators on Rearrangement- Invariant Spaces	95
 Interpolation Spaces Compatible couples; the spaces X₀ + X₁ and X₀ ∩ X₁; admissible operators; interpolation pairs; interpolation spaces. 	96

Contents ix

 Interpolation Between L¹ and L⁴ Admissible operators and the Hardy-Littlewood-Pólya relation; substochastic operators; the Hardy-Littlewood-Pólya theorem on substochastic matrices; the Calderón-Ryff theorem; interpolation spaces between L¹ and L⁻*. 	105
 The Hardy-Littlewood Maximal Operator The Hardy-Littlewood maximal operator M; a weak-type estimate; Lebesgue's differentiation theorem; equivalence of (Mf)* and f**; Hardy's inequalities; the Hardy-Littlewood maximal theorem. 	117
 The Hilbert Transform The Hilbert transform H; the maximal Hilbert transform H; the Loomis lemmas; the Stein-Weiss lemma; weak-type estimates for H and H; existence of the Hilbert transform; the M. Riesz theorem. 	126
 Operators of Joint Weak Type (p₀, q₀; p₁, q₁) The Calderón operator S_n; operators of joint weak type (p₀, q₀; p₁, q₁); Calderón's theorem; indices of rearrangement-invariant spaces; Boyd's theorem; the Hardy-Little-wood maximal operator and the Hilbert transform on rearrangement-invariant spaces. 	141
 Norm-Convergence of Fourier Series Fourier series; the conjugate-function operator; a.e. convergence of the principal-value integral; the conjugate-function operator as a multiplier; norm-convergence of Fourier series in rearrangement-invariant spaces. 	154
 Theorems of Lorentz and Shimogaki Decreasing rearrangements and differences of functions; decomposition with respect to the Hardy-Littlewood-Pólya relation. 	166
Exercises and Further Results for Chapter 3	174
Notes for Chapter 3	179
Chapter 4. The Classical Interpolation Theorems	183
 The Riesz Convexity Theorem Operators of strong type (p, q); an interpolation theorem for positive integral operators; bilinear forms; the M. Riesz convexity theorem. 	185

x		Contents
2	 The Riesz-Thorin Convexity Theorem The Hadamard three-lines theorem; the Riesz-Thorin convexity theorem; Young's inequality; the Hausdorff-Young theorem; multilinear interpolation; interpolation of compact operators. 	195
3	Analytic Families of Operators An extension of the three-lines theorem; analytic families of operators; Stein's interpolation theorem for analytic families; weighted L*P-spaces; Stein's theorem on interpolation with change of measures.	205
4	i. The Marcinkiewicz Interpolation Theorem Lorentz L ^{p,q} -spaces; operators of weak type (p,q); the Marcinkiewicz interpolation theorem; the Paley-Hausdorff- Young theorem; fractional integral operators; the Hardy- Littlewood-Soboley theorem of fractional integration.	216
5	6. Restricted Weak Type and A.E. Convergence Nonnegative sublinear operators; operators of restricted weak type (p, q); the Stein-Weiss interpolation theorem for restricted weak-type operators; Moon's theorem; maximal operators; Banach's principle; Stein's theorem on limits of sequences of operators.	230
6	6. LlogL and L _{exp} The Zygmund spaces LlogL and L _{exp} ; a limiting case of the Marcinkiewicz interpolation theorem; LlogL and the Hardy-Littlewood maximal operator; theorems of M. Riesz and Zygmund for the conjugate-function operator; Zygmund spaces; Lorentz-Zygmund spaces.	243
	 Further Extensions of the Weak-Type Theory The Calderón maximal interpolation operator for rearrangement-invariant spaces; multilinear interpolation of n initial estimates; interpolation of convolution operators. 	255
1	 Orlicz Spaces Young's functions; Orlicz classes; complementary Young's functions; Orlicz spaces; the associate space; the Luxemburg norm; separability; duality. 	265
	Exercises and Further Results for Chapter 4	280

Notes for Chapter 4

286

Contents

Chap	pter 5. The K-Method	291
1.	The K-Method The Peetre J- and K-functionals; Gagliardo completion; the K-functional for (L^1, L^n) ; the (θ, q) -spaces; the fundamental interpolation inequality; an interpolation theorem for (θ, q) - spaces; the k-method.	293
2.	Structure Theorems for the (θ,q) -spaces Holmstedt's formula; the reiteration theorem; the J -method; the equivalence theorem; the density theorem; Wolff's theorem.	307
3.	Monotone Interpolation Spaces Monotone Riesz-Fischer norms; monotone intermediate spaces; Cwikel's lemma; divisibility; characterization of monotone interpolation spaces.	319
4.	Besov and Sobolev Spaces Modulus of smoothness; Besov spaces $B_{\bullet,q}^p$; Sobolev spaces W_{\bullet}^p ; K -functional for (L^p,W_{\bullet}^p) ; Marchaud's inequality; Sobolev type embedding theorems.	331
5.	Interpolation Between W_k^1 and W_k^n . The Whitney covering lemma; Taylor polynomials; an extension theorem; the K -functional for (W_k^1, W_k^n) .	347
6.	Re H^1 and BMO The nontangential maximal operator; a theorem of Hardy and Littlewood; the Hardy space Re H^1 ; the space BMO of functions of bounded mean oscillation; a lemma of Spanne and Stein; atomic decomposition; equivalent characterizations of Re H^1 ; the K -functional for $(Re(H^1), L^{\infty})$; Fefferman's duality theorem.	362
7.	BMO and Weak- L^n Oscillation of f^* and f ; the John-Nirenberg lemma; weak- L^n ; the rearrangement-invariant hull of BMO; restricted weak type (∞,∞) ; an interpolation theorem; the space BLO of functions of bounded lower oscillation; the Hardy-Littlewood maximal operator on BMO.	376
8.	Interpolation Between L ¹ and BMO The sharp function; the space BMO(R*); the K-functional for (L ¹ , BMO); interpolation spaces between L ¹ and BMO; the Hardy-Littlewood maximal operator on BMO(R*).	390

xii	Contest
 Jones' Solution of c ^zf = μ Carleson measures; Jones' constructive solution of c ^zf = μ. 	40
 Interpolation Between H¹ and H² The K-functional for (H¹, H²); characterization of the interpolation spaces between H¹ and H². 	41
Exercises and Further Results for Chapter 5	426
Notes for Chapter 5	436
Appendix A	44
References	44
Bibliography	44
Index	46
List of Notations	46