ELECTRODYNAMICS AND CLASSICAL THEORY OF FIELDS & PARTICLES

A.O. BARUT

Professor of Physics University of Colorado

DOVER PUBLICATIONS, INC. NEW YORK

$C_{ ext{ontents}}$

Preface

Introduction	xiii
PART I. RELATIVISTIC DESCRIPTION OF FIELDS AND PARTICLES	
CHAPTER 1 Lorentz Transformations	3
1. The Physical Basis of the Lorentz Transformations	3
2. Mathematical Properties of the Lorentz Space	6
Notations	6
Vectors and Scalar Products	8
Basis	11
Complex Lorentz Space	11
3. Properties of the Lorentz Transformations	12
4. Special Lorentz Transformations: Applications	16
5. The Lorentz Group and its Representations	22
A. The Four Parts of the Lorentz Group	22
B. Correspondance with the 2 × 2 Unimodular Group	23
C. Spinors	25
D. Higher-Order Spinor and Tensor Representations	29

		Page
	E. Infinitesimal Generators of the Lorentz and	
	Unimodular Groups	32
	F. Complex Lorentz Group	34
6.	The Principle of Relativity: Invariance and Covariance	35
7.	Tensor and Spinor Fields and Momentum Space Functions	36
8.	Analysis	38
9.	Further Developments and Exercises	41
Bit	bliography for Chapter I	45
CHAPTER	II Relativistic Dynamics	47
1.	Proper Time Form of the Equations of Motion	48
	Particles with Zero Rest Mass	52
	Explicit Forms of the Minkowski Force K*	54
	Angular Momentum	57
	Systems of Colliding Particles	58
2	Lagrangian Form of the Equations of Motion	60
3.	Canonical Form of the Equations of Motion	68
4.	Electric and Magnetic Moments: Classical Spin	73
5.	Further Developments and Exercises	80
No	otes and Bibliography for Chapter II	83
CHAPTER	m Relativistic Field Theory	85
1.	Intuitive Introduction of Fields	85
2.	The Electromagnetic Field	88
	Basic Equations	88
	Lorentz Electrodynamics	92
	Covariant Form of Maxwell-Lorentz Equations	93
	Gauge Transformations	94
	Invariants	95
	Covariant Form of Maxwell's Equations in Material Media	96
	Spinor Form of the Maxwell Equations	97
3.	Lagrangian Form of Field Equations	99
	(A) Variations with a Fixed Boundary B	
	(B) Variations Involving a Change of Boundary B	103
4.	Conservation Laws	105
	(A) Conservation Laws in Integral Form	105
	(B) Conservation Laws in Differential Form	112

Contents	xi

		Page
	(C) Lagrangians Not Invariant Under Translations	115
	(D) Explicit Forms of Conserved Quantities	116
5.	Canonical Form of the Field Equations	119
6.	Lagrangians Involving Higher-Order Derivatives	122
	Further Developments and Exercises	127
	bliography for Chapter III	130
	PART II INTERACTIONS OF FIELDS AND	
	PARTICLES	
CHAPTER	IV Equations of Motion and Their Solutions	135
1.	Interactions of Fields with External "Currents"	135
2.	Interactions of Fields with a Particle	138
3.	Interactions Between Fields	142
4.	Solutions of Field Equations: Green's Functions	148
5.	Further Developments and Exercises	163
Bil	bliography for Chapter IV	164
CHAPTER	v Radiation and Radiation Reaction	165
1.	Radiation Field of a Moving Particle	165
	Lienard-Wiechert Potentials	165
	The Field Tensor F**	168
2.	Properties of the Radiation Field	170
	Null Fields	170
	Plane Wave Decomposition of the Radiation Field	172
	Energy and Momentum of the Radiation Field	175
3.	Canonical Formalism for the Radiation Field in Terms of	
	the Transverse Vector Potential	177
	Energy and Momentum Radiated	179
5.	Radiation Reaction	184
	(A) Energy Balance	184
	(B) Interacting Fields and Particles	186
	(C) Finite Part of Self-Force	187
	(D) Mass Renormalization	190
(15.75)	Equations of Motion with Radiation Reaction	195
7.	Theory of the Electromagnetic Mass	199

8. Further Developments and Exercises

203

Electrodynamics and Classical Theory of Fields and Particle	Electrodynamic	and Classical	Theory of	Fields and	Particle
---	----------------	---------------	-----------	------------	----------

	Page
Bibliography for Chapter V	21
CHAPTER VI Action-at-a-Distance Electrodynamics	213
1. The Action Principle of Fokker-Schwarzschild-Tetrode	214
2. Action Principle with Self-Energy	217
3. Mass Renormalization	219
Related Mathematical Books	221
Author Index	225
Subject Index	231

xii