MARSHALL HALL, JR.

Emory University

Combinatorial Theory

Second Edition

Wiley Classics Library Edition Published 1998

A Wiley-Interscience Publication JOHN WILEY & SONS, INC.

New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

Contents

1	1	PERMUTATIONS AND COMBINATIONS	1
		1.1 Definitions 1 1.2 Applications to Probability 4 Problems 6	
2	7	INVERSION FORMULAE	8
		The Principle of Inclusion and Exclusion. Möbius Inversion 8	
		2.2 Partially Ordered Sets and Their Möbius Functions 15 Problems 18	
3	/	GENERATING FUNCTIONS AND RECURSIONS	20
		3.1 Rules and Properties 20 3.2 Combinatorial Problems 24 Problems 28	
4	1	PARTITIONS	31
		Partitions. Identities and Arithmetic Properties 31 Asymptotic Properties of p(n) 43 Problems 46	Toget

5	1	DISTINCT REPRESENTATIVES	48
		5.1 The Theorems of P. Hall and D. König 48	
		5.2 The Permanent 56	
		5.3 Proof of the van der Waerden Conjecture 58	
		5.4 Permanents of Integral Matrices with Constant Line Sum 69	
		Problems 72	
6	7		-
6	1	RAMSEY'S THEOREM	73
		6.1 Statement of the Theorem 73	
		6.2 Application of Ramsey's Theorem 74	
		Problems 75	
7	1	SOME EXTREMAL PROBLEMS	77
	Ö		"
		7.1 The Assignment Problem 77	
		7.2 Dilworth's Theorem 81	
		Problems 84	
8	1	CONVEX SPACES AND LINEAR PROGRAMMING	85
		8.1 Convex Spaces. Convex Cones and Their Duals 85	
		8.2 Linear Inequalities 89	
		8.3 Linear Programming. The Simplex Method 96	

	xiii
Contents	AIII

9	1	GRAPHICAL METHODS. DEBRUIJN SEQUENCES	110
		9.1 Complete Cycles 110	
		9.2 Theorems on Graphs 112	
		9.3 Proof of the DeBruijn Theorem 114	
		9.4 Strongly Regular Graphs 118	
		9.5 Finite Permutation Groups of Rank 3 122	
10	1	BLOCK DESIGNS	126
		10.1 General Discussion 126	
		10.2 Elementary Theorems on Block Designs 129	
		10.3 The Bruck-Ryser-Chowla Theorem 133	
		10.4 Statement of the Hasse–Minkowski Theorem. Applications 139	
11	1	DIFFERENCE SETS	147
		11.1 Examples and Definitions 147	
		11.2 Finite Fields 150	
		11.3 The Theorem of Singer 155	
		11.4 The Multiplier Theorem 159	
		11.5 Difference Sets in General Groups 164	
		11.6 Some Families of Difference Sets 170	
12	1	FINITE GEOMETRIES	199
		12.1 Foundations 199	
		12.2 Finite Geometries as Block Designs 203	
		12.3 Finite Planes 205	
		12.4 Some Types of Finite Planes 211	

xiv	Contents
-----	----------

13	1	ORTHOGONAL LATIN SQUARES	222
		13.1 Orthogonality and Orthogonal Arrays 222	
		13.2 Main Theorems 223	
		13.3 Constructions of Orthogonal Squares 228	
		13.4 The End of the Euler Conjecture 234	
14	1	HADAMARD MATRICES	23
		14.1 Paley's Constructions 238	
		14.2 Williamson's Method 254	
		14.3 An Infinite Class of Williamson Matrices 257	
		14.4 Three Recent Methods 261	
15	1	GENERAL CONSTRUCTIONS OF BLOCK DESIGNS	264
		15,1 Methods of Construction 264	
		15.2 Basic Definitions, The Hanani Theorems 264	
		15.3 Direct Construction Methods 271	
		15.4 Triple Systems 277	
		15.5 Block Designs with k Greater Than 3 289	
		15.6 Wilson's Theorem 293	
		15.7 Some Infinite Families of Designs 305	
		15.8 Biplanes 320	
16	1	THEOREMS ON COMPLETION AND EMBEDDING	33
		16.1 Connor's Method 336	
		16.2 Copositive and Completely Positive Quadratic Forms 348	
		16.3 Rational Completions of Incidence Matrices 359	
		16.4 Integral Solutions of the Incidence Equation 368	

INDEX

437

17	1	CODING THEORY AND BLOCK DESIGNS		376
		17.1 Error Correcting Codes 376		
		17.2 Weight Enumerators. The MacWilliams Equations	377	
		17.3 Applications of Codes to Designs. General Theory	381	
		17.4 Group Invariants. Gleason's Theorem and Its Generalizations 386		
		17.5 Applications to Planes of Order 10 390		
		17.6 The Symmetric (41, 16, 6) Design 399		
		APPENDIX I Balanced Incomplete Block Designs with from 3 to 20 Replications		405
		APPENDIX II Hadamard Matrices of the Williamson Type		424
		BURE LOCUE A DRIV		428